📄 animsand.cpp
字号:
/* ***** BEGIN LICENSE BLOCK *****
* Version: RCSL 1.0/RPSL 1.0
*
* Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file, are
* subject to the current version of the RealNetworks Public Source License
* Version 1.0 (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the RealNetworks Community Source License Version 1.0
* (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
* in which case the RCSL will apply. You may also obtain the license terms
* directly from RealNetworks. You may not use this file except in
* compliance with the RPSL or, if you have a valid RCSL with RealNetworks
* applicable to this file, the RCSL. Please see the applicable RPSL or
* RCSL for the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the portions
* it created.
*
* This file, and the files included with this file, is distributed and made
* available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
// system
#include <time.h>
#include <math.h>
// include
#include "hxtypes.h"
#include "hxwintyp.h"
#include "hxcom.h"
#include "hxxml.h"
#include "smiltype.h"
// pnmisc
#include "hxwinver.h"
// pncont
#include "hxslist.h"
// rnxmllib
#include "hxxmlprs.h"
// rmasmil
#include "smlelem.h"
#include "smlparse.h"
#include "animattr.h"
// smlrendr
#include "smlrmlog.h"
#include "animsand.h"
// pndebug
#include "hxheap.h"
#include "debugout.h"
#ifdef _DEBUG
#undef HX_THIS_FILE
static const char HX_THIS_FILE[] = __FILE__;
#endif
CAnimationSandwichLayer::CAnimationSandwichLayer(CSmilAnimateElement* pElement,
UINT32 ulAttrName,
CSmilParser* pParser)
{
MLOG_LEAKCHECK("CON CAnimationSandwichLayer this=0x%08x\n", this);
m_pElement = NULL;
m_ulAttrName = kAttrNameUnknown;
m_pdPacedDist = NULL;
m_pdPacedTime = NULL;
m_bRecomputePace = FALSE;
m_bFirstTime = TRUE;
m_pSmilParser = pParser;
m_ulLastTime = 0;
m_ulDelay = 0;
m_ulActiveDuration = 0;
if (pElement && pElement->m_pNode)
{
// Make sure the attribute name makes sense
// with this element. If this element
// is NOT an <animateMotion>, then we expect
// the attribute name in the element to match
// the passed-in attribute name. If this
// element IS <animateMotion>, then the passed-in
// attribute should be either "left" or "top".
if ((pElement->m_pNode->m_tag == SMILAnimateMotion &&
(ulAttrName == kAttrNameLeft || ulAttrName == kAttrNameTop)) ||
(pElement->m_pNode->m_tag != SMILAnimateMotion &&
ulAttrName == (UINT32) pElement->m_ucAttributeName))
{
// Assign the members
m_pElement = pElement;
m_ulAttrName = ulAttrName;
m_ulDelay = pElement->m_ulDelay;
m_ulActiveDuration = pElement->m_ulActiveDuration;
// Check if the "end" attribute constrains
// the active duration.
if (pElement->m_bEndOffsetSet)
{
UINT32 ulEndMinusBegin = ((UINT32) pElement->m_lEndOffset) - m_ulDelay;
if (ulEndMinusBegin < m_ulActiveDuration)
{
m_ulActiveDuration = ulEndMinusBegin;
}
}
// If we are a paced animation, then we need to
// decide how we are going to compute the D()
// and T() functions.
if (pElement->m_ucCalcMode == kCalcModePaced)
{
// Now we need to determine if these functions should be
// re-computed every time. We need to do this IF any
// attributes are relative.
BOOL bSomeRelative = FALSE;
for (UINT32 i = 0; i < pElement->m_ulNumValues; i++)
{
if (pElement->m_ppValue[i])
{
for (UINT32 j = 0; j < CAttr::kVectorSize; j++)
{
if (pElement->m_ppValue[i]->IsRelative(j))
{
bSomeRelative = TRUE;
}
}
}
}
if (bSomeRelative)
{
// We will have to recompute the functions
// every time we evaluate
m_bRecomputePace = TRUE;
}
}
}
}
}
CAnimationSandwichLayer::~CAnimationSandwichLayer()
{
MLOG_LEAKCHECK("DES CAnimationSandwichLayer this=0x%08x\n", this);
HX_VECTOR_DELETE(m_pdPacedDist);
HX_VECTOR_DELETE(m_pdPacedTime);
}
const char* CAnimationSandwichLayer::GetAnimationElementID() const
{
const char* pRet = NULL;
if (m_pElement &&
m_pElement->m_pNode)
{
pRet = (const char*) m_pElement->m_pNode->m_id;
}
return pRet;
}
const char* CAnimationSandwichLayer::GetTargetElementID() const
{
const char* pRet = NULL;
if (m_pElement && m_pElement->m_pTargetElementID)
{
pRet = (const char*) *m_pElement->m_pTargetElementID;
}
return pRet;
}
SMILNodeTag CAnimationSandwichLayer::GetTargetElementTag() const
{
SMILNodeTag eRet = SMILUnknown;
if (m_pElement)
{
eRet = m_pElement->m_eTargetElementTag;
}
return eRet;
}
SMILNodeTag CAnimationSandwichLayer::GetAnimationElementTag() const
{
SMILNodeTag eRet = SMILUnknown;
if (m_pElement && m_pElement->m_pNode)
{
eRet = m_pElement->m_pNode->m_tag;
}
return eRet;
}
BOOL CAnimationSandwichLayer::IsActive(UINT32 ulTime) const
{
BOOL bRet = FALSE;
if (m_pElement && ulTime >= m_ulDelay)
{
if (m_pElement->m_bIndefiniteActiveDuration ||
ulTime < m_ulDelay + m_ulActiveDuration)
{
// During the active duration - it's active
bRet = TRUE;
}
}
return bRet;
}
BOOL CAnimationSandwichLayer::IsFrozen(UINT32 ulTime) const
{
BOOL bRet = FALSE;
if (m_pElement &&
(m_pElement->m_eActualFill == FillFreeze ||
m_pElement->m_eActualFill == FillHold))
{
if (!m_pElement->m_bIndefiniteActiveDuration)
{
if (ulTime >= m_ulDelay + m_ulActiveDuration)
{
// XXXMEH - now that we are calculating a remove
// time for every timed element, we should be able
// to use the m_ulRemoveTime. However, let's keep
// the old code around "just in case".
if (m_pElement->m_ulRemoveTime == ((UINT32) -1))
{
UINT32 ulRemoveTime = 0;
HX_RESULT rv = m_pSmilParser->computeRemoveTime(m_pElement->m_pNode->m_id,
ulRemoveTime);
if (SUCCEEDED(rv))
{
m_pElement->m_ulRemoveTime = ulRemoveTime;
}
}
if (ulTime <= m_pElement->m_ulRemoveTime)
{
bRet = TRUE;
}
}
}
}
return bRet;
}
BOOL CAnimationSandwichLayer::IsActiveZeroBased(UINT32 ulTime) const
{
BOOL bRet = FALSE;
if (m_pElement &&
(m_pElement->m_bIndefiniteActiveDuration ||
ulTime < m_ulActiveDuration))
{
// During the active duration - it's active
bRet = TRUE;
}
return bRet;
}
BOOL CAnimationSandwichLayer::IsFrozenZeroBased(UINT32 ulTime) const
{
BOOL bRet = FALSE;
if (m_pElement &&
(m_pElement->m_eActualFill == FillFreeze ||
m_pElement->m_eActualFill == FillHold))
{
if (!m_pElement->m_bIndefiniteActiveDuration)
{
if (ulTime >= m_ulActiveDuration)
{
if (ulTime <= (m_pElement->m_ulRemoveTime - m_ulDelay))
{
bRet = TRUE;
}
}
}
}
return bRet;
}
BOOL CAnimationSandwichLayer::IsAdditive() const
{
BOOL bRet = FALSE;
if (m_pElement)
{
if (m_pElement->m_ucAdditive == kAdditiveSum)
{
bRet = TRUE;
}
}
return bRet;
}
BOOL CAnimationSandwichLayer::IsToAnimation() const
{
BOOL bRet = FALSE;
if (m_pElement &&
m_pElement->m_ucAnimationType == kAnimTypeTo)
{
bRet = TRUE;
}
return bRet;
}
CAttr CAnimationSandwichLayer::AnimationEffectFunction(UINT32 ulTime,
CAttr* pUnder,
CAttr* pDepend)
{
CAttr cRet;
if (pUnder)
{
// Initialize to the underlying value
cRet = *pUnder;
// Compute the zero-based time
UINT32 ulT = ulTime - m_ulDelay; // XXXMEH - is this right?
// Compute the time after time manipulations
UINT32 ulTM = ComputeFilteredSimpleTime(ulT);
// Decide if we're active or frozen
if (IsActiveZeroBased(ulT))
{
// Evaluate the cumulative animation function at this time
cRet = CumulativeAnimationFunction(ulTM, pUnder, pDepend);
// Now we need to check if we need to fire a repeatEvent.
//
// Compute which iteration the last time was in
UINT32 ulLastIter = 0;
if (m_pElement->m_ulSimpleDuration)
{
ulLastIter = m_ulLastTime / m_pElement->m_ulSimpleDuration;
}
// Compute which iteration we are currently in
UINT32 ulThisIter = 0;
if (m_pElement->m_ulSimpleDuration)
{
ulThisIter = ulTM / m_pElement->m_ulSimpleDuration;
}
// If we are in different iterations, then we will
// assume that this is the first time in the new iteration
// and we will fire a "repeatEvent"
if (ulLastIter != ulThisIter &&
m_pSmilParser)
{
m_pSmilParser->tryToResolveBeginEndEvents("repeatEvent",
m_pElement->m_pNode->m_id,
ulTime);
// XXXMEH - temporarily, we will also fire a "repeat(x)" event
char szTmp[32]; /* Flawfinder: ignore */
sprintf(szTmp, "repeat(%lu)", ulThisIter); /* Flawfinder: ignore */
m_pSmilParser->tryToResolveBeginEndEvents((const char*) szTmp,
m_pElement->m_pNode->m_id,
ulTime);
}
// Save the last time
m_ulLastTime = ulTM;
}
else if (IsFrozenZeroBased(ulT))
{
// We are in the frozen period after the active duration
//
// Compute the remainder time
// XXXMEH - TODO - most of the time this "frozen time"
// calculation can be done once up front.
UINT32 ulModTime = 0;
// m_ulActiveDuration takes into speed modifications. We
// need to undo this before we compute the remainder time.
UINT32 ulNewAD = m_ulActiveDuration;
if (m_pElement->m_dSpeed != 1.0)
{
double dNewAD = (double) ulNewAD * fabs(m_pElement->m_dSpeed);
ulNewAD = (UINT32) floor(dNewAD + 0.5);
}
// m_ulSimpleDuration does NOT take into account autoReverse,
// but m_ulActiveDuration does. So we need to add in the
// effect of autoReverse to m_ulSimpleDuration
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -