📄 updownmix.cpp
字号:
/* ***** BEGIN LICENSE BLOCK *****
* Version: RCSL 1.0/RPSL 1.0
*
* Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file, are
* subject to the current version of the RealNetworks Public Source License
* Version 1.0 (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the RealNetworks Community Source License Version 1.0
* (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
* in which case the RCSL will apply. You may also obtain the license terms
* directly from RealNetworks. You may not use this file except in
* compliance with the RPSL or, if you have a valid RCSL with RealNetworks
* applicable to this file, the RCSL. Please see the applicable RPSL or
* RCSL for the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the portions
* it created.
*
* This file, and the files included with this file, is distributed and made
* available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
#include "hxassert.h"
#include "mixengine.h"
#include "math64.h"
#ifdef HELIX_FEATURE_LIMITER
#include "limiter.h"
#endif
#define MINUS3DB .707106781186547524 /* sqrt(2)/2 */
/*****************************************************************************
*
* The upmix and downmix machinery.
*
****************************************************************************/
typedef struct UpMixMachine {
int offsetIn, offsetOut ;
const struct UpMixMachine *nextState ;
} tUpMixMachine ;
static const tUpMixMachine up_id[1] =
{
{
1,1,
&up_id[0]
}
} ;
static const tUpMixMachine up_1_2[2] =
{
{
0,1,
&up_1_2[1]
},
{
1,1,
&up_1_2[0]
}
} ;
/* mix mono into L,R instead of C */
static const tUpMixMachine up_1_5[2] =
{
{
0,1,
&up_1_5[1]
},
{
1,4,
&up_1_5[0]
}
} ;
/* mix mono into L,R instead of C */
static const tUpMixMachine up_1_6[2] =
{
{
0,1,
&up_1_6[1]
},
{
1,5,
&up_1_6[0]
}
} ;
static const tUpMixMachine up_2_5[2] =
{
{
1,1,
&up_2_5[1]
},
{
1,4,
&up_2_5[0]
}
} ;
static const tUpMixMachine up_4_6[5] =
{
{
1,1,
&up_4_6[1]
},
{
1,1,
&up_4_6[2]
},
{
1,2,
&up_4_6[3]
},
{
0,1,
&up_4_6[4]
},
{
1,1,
&up_4_6[0]
}
} ;
static const tUpMixMachine up_5_6[5] =
{
{
1,1,
&up_5_6[1]
},
{
1,1,
&up_5_6[2]
},
{
1,2,
&up_5_6[3]
},
{
1,1,
&up_5_6[4]
},
{
1,1,
&up_5_6[0]
}
} ;
HX_RESULT HXAudioSvcMixEngine::SetupUpDownmix(void)
{
// we'll need something more intelligent for multichannel
m_nChannels_2_3 = MIN(m_nChannels_1, m_nChannels_4) ;
// initialize downmix
if (m_nChannels_1 != m_nChannels_2_3)
{
if (m_nChannels_1 == 2 && m_nChannels_2_3 == 1)
m_pfDownmix = &HXAudioSvcMixEngine::downmix2_1 ;
else if (m_nChannels_1 == 5 && m_nChannels_2_3 == 1)
m_pfDownmix = &HXAudioSvcMixEngine::downmix5_1 ;
else if (m_nChannels_1 == 6 && m_nChannels_2_3 == 2)
m_pfDownmix = &HXAudioSvcMixEngine::downmix6_2_matrix ;
else if (m_nChannels_1 == 5 && m_nChannels_2_3 == 2)
m_pfDownmix = &HXAudioSvcMixEngine::downmix5_2_matrix ;
else if (m_nChannels_1 == 4 && m_nChannels_2_3 == 2)
m_pfDownmix = &HXAudioSvcMixEngine::downmix4_2_matrix ;
else
return HXR_FAIL ;
/* If we downmix, we limit. Special-case stereo to mono: create one bit of
headroom, don't limit */
#if HELIX_FEATURE_LIMITER
if (!(m_nChannels_1 == 2 && m_nChannels_2_3 == 1))
m_pLimiter = LimiterInit(m_ulSampleRate_3_4, m_nChannels_2_3, HEADROOM) ;
else
#endif
m_pLimiter = 0 ;
}
// initialize upmix
if (m_nChannels_2_3 == m_nChannels_4)
m_upmixMachine = up_id ;
else if (m_nChannels_2_3 == 1 && m_nChannels_4 == 2)
m_upmixMachine = up_1_2 ;
else if (m_nChannels_2_3 == 1 && m_nChannels_4 == 5)
m_upmixMachine = up_1_5 ;
else if (m_nChannels_2_3 == 1 && m_nChannels_4 == 6)
m_upmixMachine = up_1_6 ;
else if (m_nChannels_2_3 == 2 && m_nChannels_4 == 5)
m_upmixMachine = up_2_5 ;
else if (m_nChannels_2_3 == 5 && m_nChannels_4 == 6)
m_upmixMachine = up_5_6 ;
else if (m_nChannels_2_3 == 4 && m_nChannels_4 == 6)
m_upmixMachine = up_4_6 ;
else
return HXR_FAIL ;
m_clev = m_slev = (int)((1UL<<31) * MINUS3DB) ; // -3 dB is default attenuation
return HXR_OK ;
}
/* saturated 16-bit add */
INT16 adds16(INT16 a, INT16 b)
{
INT32 s = (INT32)a+b ;
if (s > 0x7fff) s = 0x7fff ;
else if (s < -0x8000) s = -0x8000 ;
return (INT16)s ;
}
/* saturated 32-bit add */
INT32 adds32(INT32 a, INT32 b)
{
INT32 s = a+b ;
INT32 ov = ~(a ^ b) & (a ^ s) & 0x80000000 ; // overflow
if (ov)
s = (signed)((1UL<<31)-1)-((s ^ ov) >> 31) ;
return s ;
}
/* mix into a 32-bit buffer. Returns the number of samples written (more precisely,
if we mix 2 channels into a 5 channel buffer, and feed 2*n samples, then this
function will return 5*n samples, regardless into how many channels the 2 original
channels are mixed. */
UINT32 HXAudioSvcMixEngine::upmix(const tAudioSample *pIn, INT32 *pOut0, const tUpMixMachine *pUpmixMachine, int nSamples, BOOL isDirty)
{
INT32 *pOut = pOut0 ;
HX_ASSERT(nSamples % m_nChannels_2_3 == 0) ;
const tAudioSample *pEnd = pIn + nSamples ;
if (!isDirty)
{
while (pIn != pEnd)
{
*pOut = adds32(*pIn << (32-NBITS_PER_AUDIOSAMPLE), *pOut);
pIn += pUpmixMachine->offsetIn ;
pOut += pUpmixMachine->offsetOut ;
pUpmixMachine = pUpmixMachine->nextState ;
}
}
else
{
while (pIn != pEnd)
{
INT32 t = (INT32)*pIn << (32-NBITS_PER_AUDIOSAMPLE) ; // -MulShift31(*pIn,pUpmixMachine->gain)
*pOut = t ;
pIn += pUpmixMachine->offsetIn ;
pOut += pUpmixMachine->offsetOut ;
pUpmixMachine = pUpmixMachine->nextState ;
}
}
return pOut - pOut0 ;
}
/* mix into a 16-bit buffer. Returns the number of samples written (more precisely,
if we mix 2 channels into a 5 channel buffer, and feed 2*n samples, then this
function will return 5*n samples, regardless into how many channels the 2 original
channels are mixed. */
UINT32 HXAudioSvcMixEngine::upmix(const tAudioSample *pIn, INT16 *pOut0, const tUpMixMachine *pUpmixMachine, int nSamples, BOOL isDirty)
{
INT16 *pOut = pOut0 ;
HX_ASSERT(nSamples % m_nChannels_2_3 == 0) ;
const tAudioSample *pEnd = pIn + nSamples ;
if (!isDirty)
{
while (pIn != pEnd)
{
*pOut = adds16((INT16)(*pIn >> (NBITS_PER_AUDIOSAMPLE-16)), *pOut);
pIn += pUpmixMachine->offsetIn ;
pOut += pUpmixMachine->offsetOut ;
pUpmixMachine = pUpmixMachine->nextState ;
}
}
else
{
while (pIn != pEnd)
{
*pOut = (INT16)(*pIn >> (NBITS_PER_AUDIOSAMPLE-16)) ;
pIn += pUpmixMachine->offsetIn ;
pOut += pUpmixMachine->offsetOut ;
pUpmixMachine = pUpmixMachine->nextState ;
}
}
return pOut - pOut0 ;
}
void HXAudioSvcMixEngine::downmix2_1(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
while (pBuffer != pEnd)
{
*pOut++ = (pBuffer[L]>>1) + (pBuffer[R]>>1) ;
pBuffer += strideIn ;
}
}
void HXAudioSvcMixEngine::downmix5_1(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,Ls,Rs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-2);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ;
INT32 cs = MulShift32((pBuffer[Ls]>>1) + (pBuffer[Rs]>>1), slev) ;
*pOut++ = (pBuffer[L]>>HEADROOM) + c + (pBuffer[R]>>HEADROOM) + cs ;
pBuffer += strideIn ;
}
}
// Matrix surround downmix
void HXAudioSvcMixEngine::downmix5_2_matrix(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,Ls,Rs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-2);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ; // creates two bits headroom
INT32 cs = MulShift32((pBuffer[Ls]>>1) + (pBuffer[Rs]>>1), slev) ; // two bits hr
pOut[0] = (pBuffer[L]>>HEADROOM) + c + cs ;
pOut[1] = (pBuffer[R]>>HEADROOM) + c - cs ;
pBuffer += strideIn ;
pOut += 2 ;
}
}
// Stereo downmix
void HXAudioSvcMixEngine::downmix5_2_stereo(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,Ls,Rs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-1);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ;
pOut[0] = (pBuffer[L]>>HEADROOM) + c + MulShift32(pBuffer[Ls], slev) ;
pOut[1] = (pBuffer[R]>>HEADROOM) + c + MulShift32(pBuffer[Rs], slev) ;
pBuffer += strideIn ;
pOut += 2 ;
}
}
// Matrix surround downmix
void HXAudioSvcMixEngine::downmix6_2_matrix(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,LFE,Ls,Rs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-2);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ; // creates two bits headroom
INT32 cs = MulShift32((pBuffer[Ls]>>1) + (pBuffer[Rs]>>1), slev) ; // two bits hr
pOut[0] = (pBuffer[L]>>HEADROOM) + c + cs ;
pOut[1] = (pBuffer[R]>>HEADROOM) + c - cs ;
pBuffer += strideIn ;
pOut += 2 ;
}
}
// Stereo downmix
void HXAudioSvcMixEngine::downmix6_2_stereo(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,LFE,Ls,Rs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-1);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ;
pOut[0] = (pBuffer[L]>>HEADROOM) + c + MulShift32(pBuffer[Ls], slev) ;
pOut[1] = (pBuffer[R]>>HEADROOM) + c + MulShift32(pBuffer[Rs], slev) ;
pBuffer += strideIn ;
pOut += 2 ;
}
}
// Matrix surround downmix
void HXAudioSvcMixEngine::downmix4_2_matrix(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,Cs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-1);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ; // creates two bits headroom
INT32 cs = MulShift32(pBuffer[Cs], slev) ; // two bits hr
pOut[0] = (pBuffer[L]>>HEADROOM) + c + cs ;
pOut[1] = (pBuffer[R]>>HEADROOM) + c - cs ;
pBuffer += strideIn ;
pOut += 2 ;
}
}
// Stereo downmix
void HXAudioSvcMixEngine::downmix4_2_stereo(tAudioSample *pBuffer, int nSamples)
{
enum { L,R,C,Cs,strideIn } ; // input channel ordering
HX_ASSERT(nSamples % strideIn == 0) ;
const tAudioSample *pEnd = pBuffer + nSamples ;
tAudioSample *pOut = pBuffer;
const int clev = m_clev >> (HEADROOM-1);
const int slev = m_slev >> (HEADROOM-1);
while (pBuffer != pEnd)
{
INT32 c = MulShift32(pBuffer[C], clev) ;
INT32 cs = MulShift32(pBuffer[Cs], slev) ; // two bits hr
pOut[0] = (pBuffer[L]>>HEADROOM) + c + cs ;
pOut[1] = (pBuffer[R]>>HEADROOM) + c + cs ;
pBuffer += strideIn ;
pOut += 2 ;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -