📄 floatconv.c
字号:
#include <ioprivate.h>#ifdef USE_DTOA/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991 by AT&T. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************//* Please send bug reports to David M. Gay AT&T Bell Laboratories, Room 2C-463 600 Mountain Avenue Murray Hill, NJ 07974-2070 U.S.A. dmg@research.att.com or research!dmg *//* strtod for IEEE-, VAX-, and IBM-arithmetic machines. * * This strtod returns a nearest machine number to the input decimal * string (or sets errno to ERANGE). With IEEE arithmetic, ties are * broken by the IEEE round-even rule. Otherwise ties are broken by * biased rounding (add half and chop). * * Inspired loosely by William D. Clinger's paper "How to Read Floating * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * * 1. We only require IEEE, IBM, or VAX double-precision * arithmetic (not IEEE double-extended). * 2. We get by with floating-point arithmetic in a case that * Clinger missed -- when we're computing d * 10^n * for a small integer d and the integer n is not too * much larger than 22 (the maximum integer k for which * we can represent 10^k exactly), we may be able to * compute (d*10^k) * 10^(e-k) with just one roundoff. * 3. Rather than a bit-at-a-time adjustment of the binary * result in the hard case, we use floating-point * arithmetic to determine the adjustment to within * one bit; only in really hard cases do we need to * compute a second residual. * 4. Because of 3., we don't need a large table of powers of 10 * for ten-to-e (just some small tables, e.g. of 10^k * for 0 <= k <= 22). *//* * #define IEEE_8087 for IEEE-arithmetic machines where the least * significant byte has the lowest address. * #define IEEE_MC68k for IEEE-arithmetic machines where the most * significant byte has the lowest address. * #define Sudden_Underflow for IEEE-format machines without gradual * underflow (i.e., that flush to zero on underflow). * #define IBM for IBM mainframe-style floating-point arithmetic. * #define VAX for VAX-style floating-point arithmetic. * #define Unsigned_Shifts if >> does treats its left operand as unsigned. * #define No_leftright to omit left-right logic in fast floating-point * computation of dtoa. * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines * that use extended-precision instructions to compute rounded * products and quotients) with IBM. * #define ROUND_BIASED for IEEE-format with biased rounding. * #define Inaccurate_Divide for IEEE-format with correctly rounded * products but inaccurate quotients, e.g., for Intel i860. * #define Just_16 to store 16 bits per 32-bit long when doing high-precision * integer arithmetic. Whether this speeds things up or slows things * down depends on the machine and the number being converted. * #define KR_headers for old-style C function headers. */#ifdef DEBUG#include <stdio.h>#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}#endif#include <stdlib.h>#include <string.h>#define CONST const#include <errno.h>#include <float.h>#ifndef __MATH_H__#include <math.h>#endif#ifdef Unsigned_Shifts#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;#else#define Sign_Extend(a,b) /*no-op*/#endif#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1#if FLT_RADIX==16#define IBM#elif DBL_MANT_DIG==56#define VAX#elif DBL_MANT_DIG==53 && DBL_MAX_10_EXP==308#define IEEE_Unknown#elseExactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.#endif#endif#ifdef IEEE_8087#define HIWORD 1#define LOWORD 0#define TEST_ENDIANNESS /* nothing */#elif defined(IEEE_MC68k)#define HIWORD 0#define LOWORD 1#define TEST_ENDIANNESS /* nothing */#elsestatic int HIWORD = -1, LOWORD;static void test_endianness(){ union doubleword { double d; unsigned long u[2]; } dw; dw.d = 10; if (dw.u[0] != 0) /* big-endian */ HIWORD=0, LOWORD=1; else HIWORD=1, LOWORD=0;}#define TEST_ENDIANNESS if (HIWORD<0) test_endianness();#endif#define word0(x) ((unsigned long *)&x)[HIWORD]#define word1(x) ((unsigned long *)&x)[LOWORD]/* The following definition of Storeinc is appropriate for MIPS processors. */#if defined(IEEE_8087) + defined(VAX)#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \((unsigned short *)a)[0] = (unsigned short)c, a++)#elif defined(IEEE_MC68k)#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \((unsigned short *)a)[1] = (unsigned short)c, a++)#else#define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)#endif/* #define P DBL_MANT_DIG *//* Ten_pmax = floor(P*log(2)/log(5)) *//* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 *//* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) *//* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_Unknown)#define Exp_shift 20#define Exp_shift1 20#define Exp_msk1 0x100000#define Exp_msk11 0x100000#define Exp_mask 0x7ff00000#define P 53#define Bias 1023#define IEEE_Arith#define Emin (-1022)#define Exp_1 0x3ff00000#define Exp_11 0x3ff00000#define Ebits 11#define Frac_mask 0xfffff#define Frac_mask1 0xfffff#define Ten_pmax 22#define Bletch 0x10#define Bndry_mask 0xfffff#define Bndry_mask1 0xfffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 1#define Tiny0 0#define Tiny1 1#define Quick_max 14#define Int_max 14#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */#else#undef Sudden_Underflow#define Sudden_Underflow#ifdef IBM#define Exp_shift 24#define Exp_shift1 24#define Exp_msk1 0x1000000#define Exp_msk11 0x1000000#define Exp_mask 0x7f000000#define P 14#define Bias 65#define Exp_1 0x41000000#define Exp_11 0x41000000#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */#define Frac_mask 0xffffff#define Frac_mask1 0xffffff#define Bletch 4#define Ten_pmax 22#define Bndry_mask 0xefffff#define Bndry_mask1 0xffffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 4#define Tiny0 0x100000#define Tiny1 0#define Quick_max 14#define Int_max 15#else /* VAX */#define Exp_shift 23#define Exp_shift1 7#define Exp_msk1 0x80#define Exp_msk11 0x800000#define Exp_mask 0x7f80#define P 56#define Bias 129#define Exp_1 0x40800000#define Exp_11 0x4080#define Ebits 8#define Frac_mask 0x7fffff#define Frac_mask1 0xffff007f#define Ten_pmax 24#define Bletch 2#define Bndry_mask 0xffff007f#define Bndry_mask1 0xffff007f#define LSB 0x10000#define Sign_bit 0x8000#define Log2P 1#define Tiny0 0x80#define Tiny1 0#define Quick_max 15#define Int_max 15#endif#endif#ifndef IEEE_Arith#define ROUND_BIASED#endif#ifdef RND_PRODQUOT#define rounded_product(a,b) a = rnd_prod(a, b)#define rounded_quotient(a,b) a = rnd_quot(a, b)extern double rnd_prod(double, double), rnd_quot(double, double);#else#define rounded_product(a,b) a *= b#define rounded_quotient(a,b) a /= b#endif#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))#define Big1 0xffffffff#ifndef Just_16/* When Pack_32 is not defined, we store 16 bits per 32-bit long. * This makes some inner loops simpler and sometimes saves work * during multiplications, but it often seems to make things slightly * slower. Hence the default is now to store 32 bits per long. */#ifndef Pack_32#define Pack_32#endif#endif#define Kmax 15extern "C" double _Xstrtod(const char *s00, char **se);extern "C" char *dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve); structBigint { struct Bigint *next; int k, maxwds, sign, wds; unsigned long x[1]; }; typedef struct Bigint Bigint; static Bigint *freelist[Kmax+1]; static Bigint *Balloc#ifdef KR_headers (k) int k;#else (int k)#endif{ int x; Bigint *rv; if (rv = freelist[k]) { freelist[k] = rv->next; } else { x = 1 << k; rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(long)); rv->k = k; rv->maxwds = x; } rv->sign = rv->wds = 0; return rv; } static voidBfree#ifdef KR_headers (v) Bigint *v;#else (Bigint *v)#endif{ if (v) { v->next = freelist[v->k]; freelist[v->k] = v; } }#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \y->wds*sizeof(long) + 2*sizeof(int)) static Bigint *multadd#ifdef KR_headers (b, m, a) Bigint *b; int m, a;#else (Bigint *b, int m, int a) /* multiply by m and add a */#endif{ int i, wds; unsigned long *x, y;#ifdef Pack_32 unsigned long xi, z;#endif Bigint *b1; wds = b->wds; x = b->x; i = 0; do {#ifdef Pack_32 xi = *x; y = (xi & 0xffff) * m + a; z = (xi >> 16) * m + (y >> 16); a = (int)(z >> 16); *x++ = (z << 16) + (y & 0xffff);#else y = *x * m + a; a = (int)(y >> 16); *x++ = y & 0xffff;#endif } while(++i < wds); if (a) { if (wds >= b->maxwds) { b1 = Balloc(b->k+1); Bcopy(b1, b); Bfree(b); b = b1; } b->x[wds++] = a; b->wds = wds; } return b; } static Bigint *s2b#ifdef KR_headers (s, nd0, nd, y9) CONST char *s; int nd0, nd; unsigned long y9;#else (CONST char *s, int nd0, int nd, unsigned long y9)#endif{ Bigint *b; int i, k; long x, y; x = (nd + 8) / 9; for(k = 0, y = 1; x > y; y <<= 1, k++) ;#ifdef Pack_32 b = Balloc(k); b->x[0] = y9; b->wds = 1;#else b = Balloc(k+1); b->x[0] = y9 & 0xffff; b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;#endif i = 9; if (9 < nd0) { s += 9; do b = multadd(b, 10, *s++ - '0'); while(++i < nd0); s++; } else s += 10; for(; i < nd; i++) b = multadd(b, 10, *s++ - '0'); return b; } static inthi0bits#ifdef KR_headers (x) register unsigned long x;#else (register unsigned long x)#endif{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -