⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 floatconv.c

📁 早期freebsd实现
💻 C
📖 第 1 页 / 共 5 页
字号:
#include <ioprivate.h>#ifdef USE_DTOA/**************************************************************** * * The author of this software is David M. Gay. * * Copyright (c) 1991 by AT&T. * * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. * ***************************************************************//* Please send bug reports to        David M. Gay        AT&T Bell Laboratories, Room 2C-463        600 Mountain Avenue        Murray Hill, NJ 07974-2070        U.S.A.        dmg@research.att.com or research!dmg *//* strtod for IEEE-, VAX-, and IBM-arithmetic machines. * * This strtod returns a nearest machine number to the input decimal * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are * broken by the IEEE round-even rule.  Otherwise ties are broken by * biased rounding (add half and chop). * * Inspired loosely by William D. Clinger's paper "How to Read Floating * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * *      1. We only require IEEE, IBM, or VAX double-precision *              arithmetic (not IEEE double-extended). *      2. We get by with floating-point arithmetic in a case that *              Clinger missed -- when we're computing d * 10^n *              for a small integer d and the integer n is not too *              much larger than 22 (the maximum integer k for which *              we can represent 10^k exactly), we may be able to *              compute (d*10^k) * 10^(e-k) with just one roundoff. *      3. Rather than a bit-at-a-time adjustment of the binary *              result in the hard case, we use floating-point *              arithmetic to determine the adjustment to within *              one bit; only in really hard cases do we need to *              compute a second residual. *      4. Because of 3., we don't need a large table of powers of 10 *              for ten-to-e (just some small tables, e.g. of 10^k *              for 0 <= k <= 22). *//* * #define IEEE_8087 for IEEE-arithmetic machines where the least *      significant byte has the lowest address. * #define IEEE_MC68k for IEEE-arithmetic machines where the most *      significant byte has the lowest address. * #define Sudden_Underflow for IEEE-format machines without gradual *      underflow (i.e., that flush to zero on underflow). * #define IBM for IBM mainframe-style floating-point arithmetic. * #define VAX for VAX-style floating-point arithmetic. * #define Unsigned_Shifts if >> does treats its left operand as unsigned. * #define No_leftright to omit left-right logic in fast floating-point *      computation of dtoa. * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines *      that use extended-precision instructions to compute rounded *      products and quotients) with IBM. * #define ROUND_BIASED for IEEE-format with biased rounding. * #define Inaccurate_Divide for IEEE-format with correctly rounded *      products but inaccurate quotients, e.g., for Intel i860. * #define Just_16 to store 16 bits per 32-bit long when doing high-precision *      integer arithmetic.  Whether this speeds things up or slows things *      down depends on the machine and the number being converted. * #define KR_headers for old-style C function headers. */#ifdef DEBUG#include <stdio.h>#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}#endif#include <stdlib.h>#include <string.h>#define CONST const#include <errno.h>#include <float.h>#ifndef __MATH_H__#include <math.h>#endif#ifdef Unsigned_Shifts#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;#else#define Sign_Extend(a,b) /*no-op*/#endif#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1#if FLT_RADIX==16#define IBM#elif DBL_MANT_DIG==56#define VAX#elif DBL_MANT_DIG==53 && DBL_MAX_10_EXP==308#define IEEE_Unknown#elseExactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.#endif#endif#ifdef IEEE_8087#define HIWORD 1#define LOWORD 0#define TEST_ENDIANNESS  /* nothing */#elif defined(IEEE_MC68k)#define HIWORD 0#define LOWORD 1#define TEST_ENDIANNESS  /* nothing */#elsestatic int HIWORD = -1, LOWORD;static void test_endianness(){    union doubleword {	double d;	unsigned long u[2];    } dw;    dw.d = 10;    if (dw.u[0] != 0) /* big-endian */	HIWORD=0, LOWORD=1;    else	HIWORD=1, LOWORD=0;}#define TEST_ENDIANNESS  if (HIWORD<0) test_endianness();#endif#define word0(x) ((unsigned long *)&x)[HIWORD]#define word1(x) ((unsigned long *)&x)[LOWORD]/* The following definition of Storeinc is appropriate for MIPS processors. */#if defined(IEEE_8087) + defined(VAX)#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \((unsigned short *)a)[0] = (unsigned short)c, a++)#elif defined(IEEE_MC68k)#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \((unsigned short *)a)[1] = (unsigned short)c, a++)#else#define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)#endif/* #define P DBL_MANT_DIG *//* Ten_pmax = floor(P*log(2)/log(5)) *//* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 *//* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) *//* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_Unknown)#define Exp_shift  20#define Exp_shift1 20#define Exp_msk1    0x100000#define Exp_msk11   0x100000#define Exp_mask  0x7ff00000#define P 53#define Bias 1023#define IEEE_Arith#define Emin (-1022)#define Exp_1  0x3ff00000#define Exp_11 0x3ff00000#define Ebits 11#define Frac_mask  0xfffff#define Frac_mask1 0xfffff#define Ten_pmax 22#define Bletch 0x10#define Bndry_mask  0xfffff#define Bndry_mask1 0xfffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 1#define Tiny0 0#define Tiny1 1#define Quick_max 14#define Int_max 14#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */#else#undef  Sudden_Underflow#define Sudden_Underflow#ifdef IBM#define Exp_shift  24#define Exp_shift1 24#define Exp_msk1   0x1000000#define Exp_msk11  0x1000000#define Exp_mask  0x7f000000#define P 14#define Bias 65#define Exp_1  0x41000000#define Exp_11 0x41000000#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */#define Frac_mask  0xffffff#define Frac_mask1 0xffffff#define Bletch 4#define Ten_pmax 22#define Bndry_mask  0xefffff#define Bndry_mask1 0xffffff#define LSB 1#define Sign_bit 0x80000000#define Log2P 4#define Tiny0 0x100000#define Tiny1 0#define Quick_max 14#define Int_max 15#else /* VAX */#define Exp_shift  23#define Exp_shift1 7#define Exp_msk1    0x80#define Exp_msk11   0x800000#define Exp_mask  0x7f80#define P 56#define Bias 129#define Exp_1  0x40800000#define Exp_11 0x4080#define Ebits 8#define Frac_mask  0x7fffff#define Frac_mask1 0xffff007f#define Ten_pmax 24#define Bletch 2#define Bndry_mask  0xffff007f#define Bndry_mask1 0xffff007f#define LSB 0x10000#define Sign_bit 0x8000#define Log2P 1#define Tiny0 0x80#define Tiny1 0#define Quick_max 15#define Int_max 15#endif#endif#ifndef IEEE_Arith#define ROUND_BIASED#endif#ifdef RND_PRODQUOT#define rounded_product(a,b) a = rnd_prod(a, b)#define rounded_quotient(a,b) a = rnd_quot(a, b)extern double rnd_prod(double, double), rnd_quot(double, double);#else#define rounded_product(a,b) a *= b#define rounded_quotient(a,b) a /= b#endif#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))#define Big1 0xffffffff#ifndef Just_16/* When Pack_32 is not defined, we store 16 bits per 32-bit long. * This makes some inner loops simpler and sometimes saves work * during multiplications, but it often seems to make things slightly * slower.  Hence the default is now to store 32 bits per long. */#ifndef Pack_32#define Pack_32#endif#endif#define Kmax 15extern "C" double _Xstrtod(const char *s00, char **se);extern "C" char *dtoa(double d, int mode, int ndigits,                        int *decpt, int *sign, char **rve); structBigint {        struct Bigint *next;        int k, maxwds, sign, wds;        unsigned long x[1];        }; typedef struct Bigint Bigint; static Bigint *freelist[Kmax+1]; static Bigint *Balloc#ifdef KR_headers        (k) int k;#else        (int k)#endif{        int x;        Bigint *rv;        if (rv = freelist[k]) {                freelist[k] = rv->next;                }        else {                x = 1 << k;                rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(long));                rv->k = k;                rv->maxwds = x;                }        rv->sign = rv->wds = 0;        return rv;        } static voidBfree#ifdef KR_headers        (v) Bigint *v;#else        (Bigint *v)#endif{        if (v) {                v->next = freelist[v->k];                freelist[v->k] = v;                }        }#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \y->wds*sizeof(long) + 2*sizeof(int)) static Bigint *multadd#ifdef KR_headers        (b, m, a) Bigint *b; int m, a;#else        (Bigint *b, int m, int a)       /* multiply by m and add a */#endif{        int i, wds;        unsigned long *x, y;#ifdef Pack_32        unsigned long xi, z;#endif        Bigint *b1;        wds = b->wds;        x = b->x;        i = 0;        do {#ifdef Pack_32                xi = *x;                y = (xi & 0xffff) * m + a;                z = (xi >> 16) * m + (y >> 16);                a = (int)(z >> 16);                *x++ = (z << 16) + (y & 0xffff);#else                y = *x * m + a;                a = (int)(y >> 16);                *x++ = y & 0xffff;#endif                }                while(++i < wds);        if (a) {                if (wds >= b->maxwds) {                        b1 = Balloc(b->k+1);                        Bcopy(b1, b);                        Bfree(b);                        b = b1;                        }                b->x[wds++] = a;                b->wds = wds;                }        return b;        } static Bigint *s2b#ifdef KR_headers        (s, nd0, nd, y9) CONST char *s; int nd0, nd; unsigned long y9;#else        (CONST char *s, int nd0, int nd, unsigned long y9)#endif{        Bigint *b;        int i, k;        long x, y;        x = (nd + 8) / 9;        for(k = 0, y = 1; x > y; y <<= 1, k++) ;#ifdef Pack_32        b = Balloc(k);        b->x[0] = y9;        b->wds = 1;#else        b = Balloc(k+1);        b->x[0] = y9 & 0xffff;        b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;#endif        i = 9;        if (9 < nd0) {                s += 9;                do b = multadd(b, 10, *s++ - '0');                        while(++i < nd0);                s++;                }        else                s += 10;        for(; i < nd; i++)                b = multadd(b, 10, *s++ - '0');        return b;        } static inthi0bits#ifdef KR_headers        (x) register unsigned long x;#else        (register unsigned long x)#endif{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -