⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smplstat.cc

📁 早期freebsd实现
💻 CC
字号:
// This may look like C code, but it is really -*- C++ -*-/* Copyright (C) 1988 Free Software Foundation    written by Dirk Grunwald (grunwald@cs.uiuc.edu)This file is part of the GNU C++ Library.  This library is freesoftware; you can redistribute it and/or modify it under the terms ofthe GNU Library General Public License as published by the FreeSoftware Foundation; either version 2 of the License, or (at youroption) any later version.  This library is distributed in the hopethat it will be useful, but WITHOUT ANY WARRANTY; without even theimplied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULARPURPOSE.  See the GNU Library General Public License for more details.You should have received a copy of the GNU Library General PublicLicense along with this library; if not, write to the Free SoftwareFoundation, 675 Mass Ave, Cambridge, MA 02139, USA.*/#ifdef __GNUG__#pragma implementation#endif#include <stream.h>#include <SmplStat.h>#include <math.h>#ifndef HUGE_VAL#ifdef HUGE#define HUGE_VAL HUGE#else#include <float.h>#define HUGE_VAL DBL_MAX#endif#endif// error handlingvoid default_SampleStatistic_error_handler(const char* msg){  cerr << "Fatal SampleStatistic error. " << msg << "\n";  exit(1);}one_arg_error_handler_t SampleStatistic_error_handler = default_SampleStatistic_error_handler;one_arg_error_handler_t set_SampleStatistic_error_handler(one_arg_error_handler_t f){  one_arg_error_handler_t old = SampleStatistic_error_handler;  SampleStatistic_error_handler = f;  return old;}void SampleStatistic::error(const char* msg){  (*SampleStatistic_error_handler)(msg);}// t-distribution: given p-value and degrees of freedom, return t-value// adapted from Peizer & Pratt JASA, vol63, p1416double tval(double p, int df) {  double t;  int positive = p >= 0.5;  p = (positive)? 1.0 - p : p;  if (p <= 0.0 || df <= 0)    t = HUGE_VAL;  else if (p == 0.5)    t = 0.0;  else if (df == 1)    t = 1.0 / tan((p + p) * 1.57079633);  else if (df == 2)    t = sqrt(1.0 / ((p + p) * (1.0 - p)) - 2.0);  else  {	    double ddf = df;    double a = sqrt(log(1.0 / (p * p)));    double aa = a * a;    a = a - ((2.515517 + (0.802853 * a) + (0.010328 * aa)) /             (1.0 + (1.432788 * a) + (0.189269 * aa) +              (0.001308 * aa * a)));    t = ddf - 0.666666667 + 1.0 / (10.0 * ddf);    t = sqrt(ddf * (exp(a * a * (ddf - 0.833333333) / (t * t)) - 1.0));  }  return (positive)? t : -t;}voidSampleStatistic::reset(){    n = 0; x = x2 = 0.0;    maxValue = -HUGE_VAL;    minValue = HUGE_VAL;}voidSampleStatistic::operator+=(double value){    n += 1;    x += value;    x2 += (value * value);    if ( minValue > value) minValue = value;    if ( maxValue < value) maxValue = value;}doubleSampleStatistic::mean(){    if ( n > 0) {	return (x / n);    }    else {	return ( 0.0 );    }}doubleSampleStatistic::var(){    if ( n > 1) {	return(( x2 - ((x * x) /  n)) / ( n - 1));    }    else {	return ( 0.0 );    }}doubleSampleStatistic::stdDev(){    if ( n <= 0 || this -> var() <= 0) {	return(0);    } else {	return( (double) sqrt( var() ) );    }}doubleSampleStatistic::confidence(int interval){  int df = n - 1;  if (df <= 0) return HUGE_VAL;  double t = tval(double(100 + interval) * 0.005, df);  if (t == HUGE_VAL)    return t;  else    return (t * stdDev()) / sqrt(double(n));}doubleSampleStatistic::confidence(double p_value){  int df = n - 1;  if (df <= 0) return HUGE_VAL;  double t = tval((1.0 + p_value) * 0.5, df);  if (t == HUGE_VAL)    return t;  else    return (t * stdDev()) / sqrt(double(n));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -