📄 smplstat.cc
字号:
// This may look like C code, but it is really -*- C++ -*-/* Copyright (C) 1988 Free Software Foundation written by Dirk Grunwald (grunwald@cs.uiuc.edu)This file is part of the GNU C++ Library. This library is freesoftware; you can redistribute it and/or modify it under the terms ofthe GNU Library General Public License as published by the FreeSoftware Foundation; either version 2 of the License, or (at youroption) any later version. This library is distributed in the hopethat it will be useful, but WITHOUT ANY WARRANTY; without even theimplied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULARPURPOSE. See the GNU Library General Public License for more details.You should have received a copy of the GNU Library General PublicLicense along with this library; if not, write to the Free SoftwareFoundation, 675 Mass Ave, Cambridge, MA 02139, USA.*/#ifdef __GNUG__#pragma implementation#endif#include <stream.h>#include <SmplStat.h>#include <math.h>#ifndef HUGE_VAL#ifdef HUGE#define HUGE_VAL HUGE#else#include <float.h>#define HUGE_VAL DBL_MAX#endif#endif// error handlingvoid default_SampleStatistic_error_handler(const char* msg){ cerr << "Fatal SampleStatistic error. " << msg << "\n"; exit(1);}one_arg_error_handler_t SampleStatistic_error_handler = default_SampleStatistic_error_handler;one_arg_error_handler_t set_SampleStatistic_error_handler(one_arg_error_handler_t f){ one_arg_error_handler_t old = SampleStatistic_error_handler; SampleStatistic_error_handler = f; return old;}void SampleStatistic::error(const char* msg){ (*SampleStatistic_error_handler)(msg);}// t-distribution: given p-value and degrees of freedom, return t-value// adapted from Peizer & Pratt JASA, vol63, p1416double tval(double p, int df) { double t; int positive = p >= 0.5; p = (positive)? 1.0 - p : p; if (p <= 0.0 || df <= 0) t = HUGE_VAL; else if (p == 0.5) t = 0.0; else if (df == 1) t = 1.0 / tan((p + p) * 1.57079633); else if (df == 2) t = sqrt(1.0 / ((p + p) * (1.0 - p)) - 2.0); else { double ddf = df; double a = sqrt(log(1.0 / (p * p))); double aa = a * a; a = a - ((2.515517 + (0.802853 * a) + (0.010328 * aa)) / (1.0 + (1.432788 * a) + (0.189269 * aa) + (0.001308 * aa * a))); t = ddf - 0.666666667 + 1.0 / (10.0 * ddf); t = sqrt(ddf * (exp(a * a * (ddf - 0.833333333) / (t * t)) - 1.0)); } return (positive)? t : -t;}voidSampleStatistic::reset(){ n = 0; x = x2 = 0.0; maxValue = -HUGE_VAL; minValue = HUGE_VAL;}voidSampleStatistic::operator+=(double value){ n += 1; x += value; x2 += (value * value); if ( minValue > value) minValue = value; if ( maxValue < value) maxValue = value;}doubleSampleStatistic::mean(){ if ( n > 0) { return (x / n); } else { return ( 0.0 ); }}doubleSampleStatistic::var(){ if ( n > 1) { return(( x2 - ((x * x) / n)) / ( n - 1)); } else { return ( 0.0 ); }}doubleSampleStatistic::stdDev(){ if ( n <= 0 || this -> var() <= 0) { return(0); } else { return( (double) sqrt( var() ) ); }}doubleSampleStatistic::confidence(int interval){ int df = n - 1; if (df <= 0) return HUGE_VAL; double t = tval(double(100 + interval) * 0.005, df); if (t == HUGE_VAL) return t; else return (t * stdDev()) / sqrt(double(n));}doubleSampleStatistic::confidence(double p_value){ int df = n - 1; if (df <= 0) return HUGE_VAL; double t = tval((1.0 + p_value) * 0.5, df); if (t == HUGE_VAL) return t; else return (t * stdDev()) / sqrt(double(n));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -