⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 float.el

📁 早期freebsd实现
💻 EL
字号:
;; Copyright (C) 1986 Free Software Foundation, Inc.;; Author Bill Rosenblatt;; This file is part of GNU Emacs.;; GNU Emacs is free software; you can redistribute it and/or modify;; it under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 1, or (at your option);; any later version.;; GNU Emacs is distributed in the hope that it will be useful,;; but WITHOUT ANY WARRANTY; without even the implied warranty of;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the;; GNU General Public License for more details.;; You should have received a copy of the GNU General Public License;; along with GNU Emacs; see the file COPYING.  If not, write to;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.;; Floating point arithmetic package.;;;; Floating point numbers are represented by dot-pairs (mant . exp);; where mant is the 24-bit signed integral mantissa and exp is the;; base 2 exponent.;;;; Emacs LISP supports a 24-bit signed integer data type, which has a;; range of -(2**23) to +(2**23)-1, or -8388608 to 8388607 decimal.;; This gives six significant decimal digit accuracy.  Exponents can;; be anything in the range -(2**23) to +(2**23)-1.;;;; User interface:;; function f converts from integer to floating point;; function string-to-float converts from string to floating point;; function fint converts a floating point to integer (with truncation);; function float-to-string converts from floating point to string;;                   ;; Caveats:;; -  Exponents outside of the range of +/-100 or so will cause certain ;;    functions (especially conversion routines) to take forever.;; -  Very little checking is done for fixed point overflow/underflow.;; -  No checking is done for over/underflow of the exponent;;    (hardly necessary when exponent can be 2**23).;; ;;;; Bill Rosenblatt;; June 20, 1986;;(provide 'float);; fundamental implementation constants(defconst exp-base 2  "Base of exponent in this floating point representation.")(defconst mantissa-bits 24  "Number of significant bits in this floating point representation.")(defconst decimal-digits 6  "Number of decimal digits expected to be accurate.")(defconst expt-digits 2  "Maximum permitted digits in a scientific notation exponent.");; other constants(defconst maxbit (1- mantissa-bits)  "Number of highest bit")(defconst mantissa-maxval (1- (ash 1 maxbit))  "Maximum permissable value of mantissa")(defconst mantissa-minval (ash 1 maxbit)  "Minimum permissable value of mantissa")(defconst floating-point-regexp  "^[ \t]*\\(-?\\)\\([0-9]*\\)\\\(\\.\\([0-9]*\\)\\|\\)\\\(\\(\\([Ee]\\)\\(-?\\)\\([0-9][0-9]*\\)\\)\\|\\)[ \t]*$"  "Regular expression to match floating point numbers.  Extract matches:1 - minus sign2 - integer part4 - fractional part8 - minus sign for power of ten9 - power of ten")(defconst high-bit-mask (ash 1 maxbit)  "Masks all bits except the high-order (sign) bit.")(defconst second-bit-mask (ash 1 (1- maxbit))  "Masks all bits except the highest-order magnitude bit");; various useful floating point constants(setq _f0 '(0 . 1))(setq _f1/2 '(4194304 . -23))(setq _f1 '(4194304 . -22))(setq _f10 '(5242880 . -19));; support for decimal conversion routines(setq powers-of-10 (make-vector (1+ decimal-digits) _f1))(aset powers-of-10 1 _f10)(aset powers-of-10 2 '(6553600 . -16))(aset powers-of-10 3 '(8192000 . -13))(aset powers-of-10 4 '(5120000 . -9))(aset powers-of-10 5 '(6400000 . -6))(aset powers-of-10 6 '(8000000 . -3))(setq all-decimal-digs-minval (aref powers-of-10 (1- decimal-digits))      highest-power-of-10 (aref powers-of-10 decimal-digits))(defun fashl (fnum)			; floating-point arithmetic shift left  (cons (ash (car fnum) 1) (1- (cdr fnum))))(defun fashr (fnum)			; floating point arithmetic shift right  (cons (ash (car fnum) -1) (1+ (cdr fnum))))(defun normalize (fnum)  (if (> (car fnum) 0)			; make sure next-to-highest bit is set      (while (zerop (logand (car fnum) second-bit-mask))	(setq fnum (fashl fnum)))    (if (< (car fnum) 0)		; make sure highest bit is set	(while (zerop (logand (car fnum) high-bit-mask))	  (setq fnum (fashl fnum)))      (setq fnum _f0)))			; "standard 0"  fnum)      (defun abs (n)				; integer absolute value  (if (natnump n) n (- n)))(defun fabs (fnum)			; re-normalize after taking abs value  (normalize (cons (abs (car fnum)) (cdr fnum))))(defun xor (a b)			; logical exclusive or  (and (or a b) (not (and a b))))(defun same-sign (a b)			; two f-p numbers have same sign?  (not (xor (natnump (car a)) (natnump (car b)))))(defun extract-match (str i)		; used after string-match  (condition-case ()      (substring str (match-beginning i) (match-end i))    (error "")));; support for the multiplication function(setq halfword-bits (/ mantissa-bits 2)	; bits in a halfword      masklo (1- (ash 1 halfword-bits)) ; isolate the lower halfword      maskhi (lognot masklo)		; isolate the upper halfword      round-limit (ash 1 (/ halfword-bits 2)))(defun hihalf (n)			; return high halfword, shifted down  (ash (logand n maskhi) (- halfword-bits)))(defun lohalf (n)			; return low halfword  (logand n masklo));; Visible functions;; Arithmetic functions(defun f+ (a1 a2)  "Returns the sum of two floating point numbers."  (let ((f1 (fmax a1 a2))	(f2 (fmin a1 a2)))    (if (same-sign a1 a2)	(setq f1 (fashr f1)		; shift right to avoid overflow	      f2 (fashr f2)))    (normalize     (cons (+ (car f1) (ash (car f2) (- (cdr f2) (cdr f1))))	   (cdr f1)))))(defun f- (a1 &optional a2)		; unary or binary minus  "Returns the difference of two floating point numbers."  (if a2      (f+ a1 (f- a2))    (normalize (cons (- (car a1)) (cdr a1)))))(defun f* (a1 a2)			; multiply in halfword chunks  "Returns the product of two floating point numbers."  (let* ((i1 (car (fabs a1)))	 (i2 (car (fabs a2)))	 (sign (not (same-sign a1 a2)))	 (prodlo (+ (hihalf (* (lohalf i1) (lohalf i2)))		    (lohalf (* (hihalf i1) (lohalf i2)))		    (lohalf (* (lohalf i1) (hihalf i2)))))	 (prodhi (+ (* (hihalf i1) (hihalf i2))		    (hihalf (* (hihalf i1) (lohalf i2)))		    (hihalf (* (lohalf i1) (hihalf i2)))		    (hihalf prodlo))))    (if (> (lohalf prodlo) round-limit)	(setq prodhi (1+ prodhi)))	; round off truncated bits    (normalize     (cons (if sign (- prodhi) prodhi)	   (+ (cdr (fabs a1)) (cdr (fabs a2)) mantissa-bits)))))(defun f/ (a1 a2)			; SLOW subtract-and-shift algorithm  "Returns the quotient of two floating point numbers."  (if (zerop (car a2))			; if divide by 0      (signal 'arith-error (list "attempt to divide by zero" a1 a2))    (let ((bits (1- maxbit))	  (quotient 0) 	  (dividend (car (fabs a1)))	  (divisor (car (fabs a2)))	  (sign (not (same-sign a1 a2))))      (while (natnump bits)	(if (< (- dividend divisor) 0)	    (setq quotient (ash quotient 1))	  (setq quotient (1+ (ash quotient 1))		dividend (- dividend divisor)))	(setq dividend (ash dividend 1)	      bits (1- bits)))      (normalize       (cons (if sign (- quotient) quotient)	     (- (cdr (fabs a1)) (cdr (fabs a2)) (1- maxbit)))))))  (defun f% (a1 a2)  "Returns the remainder of first floating point number divided by second."  (f- a1 (f* (ftrunc (f/ a1 a2)) a2)))	  ;; Comparison functions(defun f= (a1 a2)  "Returns t if two floating point numbers are equal, nil otherwise."  (equal a1 a2))(defun f> (a1 a2)  "Returns t if first floating point number is greater than second,nil otherwise."  (cond ((and (natnump (car a1)) (< (car a2) 0)) 	 t)				; a1 nonnegative, a2 negative	((and (> (car a1) 0) (<= (car a2) 0))	 t)				; a1 positive, a2 nonpositive	((and (<= (car a1) 0) (natnump (car a2)))	 nil)				; a1 nonpos, a2 nonneg	((/= (cdr a1) (cdr a2))		; same signs.  exponents differ	 (> (cdr a1) (cdr a2)))		; compare the mantissas.	(t	 (> (car a1) (car a2)))))	; same exponents.(defun f>= (a1 a2)  "Returns t if first floating point number is greater than or equal to second, nil otherwise."  (or (f> a1 a2) (f= a1 a2)))(defun f< (a1 a2)  "Returns t if first floating point number is less than second,nil otherwise."  (not (f>= a1 a2)))(defun f<= (a1 a2)  "Returns t if first floating point number is less than or equal tosecond, nil otherwise."  (not (f> a1 a2)))(defun f/= (a1 a2)  "Returns t if first floating point number is not equal to second,nil otherwise."  (not (f= a1 a2)))(defun fmin (a1 a2)  "Returns the minimum of two floating point numbers."  (if (f< a1 a2) a1 a2))(defun fmax (a1 a2)  "Returns the maximum of two floating point numbers."  (if (f> a1 a2) a1 a2))      (defun fzerop (fnum)  "Returns t if the floating point number is zero, nil otherwise."  (= (car fnum) 0))(defun floatp (fnum)  "Returns t if the arg is a floating point number, nil otherwise."  (and (consp fnum) (integerp (car fnum)) (integerp (cdr fnum))));; Conversion routines(defun f (int)  "Convert the integer argument to floating point, like a C cast operator."  (normalize (cons int '0)))(defun int-to-hex-string (int)  "Convert the integer argument to a C-style hexadecimal string."  (let ((shiftval -20)	(str "0x")	(hex-chars "0123456789ABCDEF"))    (while (<= shiftval 0)      (setq str (concat str (char-to-string 			(aref hex-chars			      (logand (lsh int shiftval) 15))))	    shiftval (+ shiftval 4)))    str))(defun ftrunc (fnum)			; truncate fractional part  "Truncate the fractional part of a floating point number."  (cond ((natnump (cdr fnum))		; it's all integer, return number as is	 fnum)	((<= (cdr fnum) (- maxbit))	; it's all fractional, return 0	 '(0 . 1))	(t				; otherwise mask out fractional bits	 (let ((mant (car fnum)) (exp (cdr fnum)))	   (normalize 	    (cons (if (natnump mant)	; if negative, use absolute value		      (ash (ash mant exp) (- exp))		    (- (ash (ash (- mant) exp) (- exp))))		  exp))))))(defun fint (fnum)			; truncate and convert to integer  "Convert the floating point number to integer, with truncation, like a C cast operator."  (let* ((tf (ftrunc fnum)) (tint (car tf)) (texp (cdr tf)))    (cond ((>= texp mantissa-bits)	; too high, return "maxint"	   mantissa-maxval)	  ((<= texp (- mantissa-bits))	; too low, return "minint"	   mantissa-minval)	  (t				; in range	   (ash tint texp)))))		; shift so that exponent is 0(defun float-to-string (fnum &optional sci)  "Convert the floating point number to a decimal string.Optional second argument non-nil means use scientific notation."  (let* ((value (fabs fnum)) (sign (< (car fnum) 0))	 (power 0) (result 0) (str "") 	 (temp 0) (pow10 _f1))    (if (f= fnum _f0)	"0"      (if (f>= value _f1)			; find largest power of 10 <= value	  (progn				; value >= 1, power is positive	    (while (f<= (setq temp (f* pow10 highest-power-of-10)) value)	      (setq pow10 temp		    power (+ power decimal-digits)))	    (while (f<= (setq temp (f* pow10 _f10)) value)	      (setq pow10 temp		    power (1+ power))))	(progn				; value < 1, power is negative	  (while (f> (setq temp (f/ pow10 highest-power-of-10)) value)	    (setq pow10 temp		  power (- power decimal-digits)))	  (while (f> pow10 value)	    (setq pow10 (f/ pow10 _f10)		  power (1- power)))))					  ; get value in range 100000 to 999999      (setq value (f* (f/ value pow10) all-decimal-digs-minval)	    result (ftrunc value))      (let (int)	(if (f> (f- value result) _f1/2)	; round up if remainder > 0.5	    (setq int (1+ (fint result)))	  (setq int (fint result)))	(setq str (int-to-string int))	(if (>= int 1000000)	    (setq power (1+ power))))      (if sci				; scientific notation	  (setq str (concat (substring str 0 1) "." (substring str 1)			    "E" (int-to-string power)))					  ; regular decimal string	(cond ((>= power (1- decimal-digits))					  ; large power, append zeroes	       (let ((zeroes (- power decimal-digits)))		 (while (natnump zeroes)		   (setq str (concat str "0")			 zeroes (1- zeroes)))))					  ; negative power, prepend decimal	      ((< power 0)		; point and zeroes	       (let ((zeroes (- (- power) 2)))		 (while (natnump zeroes)		   (setq str (concat "0" str)			 zeroes (1- zeroes)))		 (setq str (concat "0." str))))	      (t				; in range, insert decimal point	       (setq str (concat			  (substring str 0 (1+ power))			  "."			  (substring str (1+ power)))))))      (if sign				; if negative, prepend minus sign	  (concat "-" str)	str))))    ;; string to float conversion.;; accepts scientific notation, but ignores anything after the first two;; digits of the exponent.(defun string-to-float (str)  "Convert the string to a floating point number.Accepts a decimal string in scientific notation, with exponent preceded by either E or e.Only the 6 most significant digits of the integer and fractional partsare used; only the first two digits of the exponent are used.Negative signs preceding both the decimal number and the exponentare recognized."  (if (string-match floating-point-regexp str 0)      (let (power)	(f*	 ; calculate the mantissa	 (let* ((int-subst (extract-match str 2))		(fract-subst (extract-match str 4))		(digit-string (concat int-subst fract-subst))		(mant-sign (equal (extract-match str 1) "-"))		(leading-0s 0) (round-up nil))	   ; get rid of leading 0's	   (setq power (- (length int-subst) decimal-digits))	   (while (and (< leading-0s (length digit-string))		       (= (aref digit-string leading-0s) ?0))	     (setq leading-0s (1+ leading-0s)))	   (setq power (- power leading-0s)		 digit-string (substring digit-string leading-0s))	   	   ; if more than 6 digits, round off	   (if (> (length digit-string) decimal-digits)	       (setq round-up (>= (aref digit-string decimal-digits) ?5)		     digit-string (substring digit-string 0 decimal-digits))	     (setq power (+ power (- decimal-digits (length digit-string)))))	   ; round up and add minus sign, if necessary	   (f (* (+ (string-to-int digit-string)		    (if round-up 1 0))		 (if mant-sign -1 1))))	   	 ; calculate the exponent (power of ten)	 (let* ((expt-subst (extract-match str 9))		(expt-sign (equal (extract-match str 8) "-"))		(expt 0) (chunks 0) (tens 0) (exponent _f1)		(func 'f*)) 	   (setq expt (+ (* (string-to-int			     (substring expt-subst 0					(min expt-digits (length expt-subst))))			    (if expt-sign -1 1))			 power))	   (if (< expt 0)		; if power of 10 negative	       (setq expt (- expt)	; take abs val of exponent		     func 'f/))		; and set up to divide, not multiply	   (setq chunks (/ expt decimal-digits)		 tens (% expt decimal-digits))	   ; divide or multiply by "chunks" of 10**6	   (while (> chunks 0)		     (setq exponent (funcall func exponent highest-power-of-10)		   chunks (1- chunks)))	   ; divide or multiply by remaining power of ten	   (funcall func exponent (aref powers-of-10 tens)))))		      _f0))				; if invalid, return 0

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -