⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 am29k-pinsn.c

📁 早期freebsd实现
💻 C
字号:
/* Instruction printing code for the AMD 29000   Copyright (C) 1990 Free Software Foundation, Inc.   Contributed by Cygnus Support.  Written by Jim Kingdon.This file is part of GDB.This program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */#include "defs.h"#include "target.h"#include "opcode/a29k.h"/* Print a symbolic representation of a general-purpose   register number NUM on STREAM.   NUM is a number as found in the instruction, not as found in   debugging symbols; it must be in the range 0-255.  */static voidprint_general (num, stream)     int num;     FILE *stream;{  if (num < 128)    fprintf_filtered (stream, "gr%d", num);  else    fprintf_filtered (stream, "lr%d", num - 128);}/* Like print_general but a special-purpose register.      The mnemonics used by the AMD assembler are not quite the same   as the ones in the User's Manual.  We use the ones that the   assembler uses.  */static voidprint_special (num, stream)     int num;     FILE *stream;{  /* Register names of registers 0-SPEC0_NUM-1.  */  static char *spec0_names[] = {    "vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr",    "pc0", "pc1", "pc2", "mmu", "lru"    };#define SPEC0_NUM ((sizeof spec0_names) / (sizeof spec0_names[0]))  /* Register names of registers 128-128+SPEC128_NUM-1.  */  static char *spec128_names[] = {    "ipc", "ipa", "ipb", "q", "alu", "bp", "fc", "cr"    };#define SPEC128_NUM ((sizeof spec128_names) / (sizeof spec128_names[0]))  /* Register names of registers 160-160+SPEC160_NUM-1.  */  static char *spec160_names[] = {    "fpe", "inte", "fps", "sr163", "exop"    };#define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0]))  if (num < SPEC0_NUM)    fprintf_filtered (stream, spec0_names[num]);  else if (num >= 128 && num < 128 + SPEC128_NUM)    fprintf_filtered (stream, spec128_names[num-128]);  else if (num >= 160 && num < 160 + SPEC160_NUM)    fprintf_filtered (stream, spec160_names[num-160]);  else    fprintf_filtered (stream, "sr%d", num);}/* Is an instruction with OPCODE a delayed branch?  */static intis_delayed_branch (opcode)     int opcode;{  return (opcode == 0xa8 || opcode == 0xa9 || opcode == 0xa0 || opcode == 0xa1	  || opcode == 0xa4 || opcode == 0xa5	  || opcode == 0xb4 || opcode == 0xb5	  || opcode == 0xc4 || opcode == 0xc0	  || opcode == 0xac || opcode == 0xad	  || opcode == 0xcc);}/* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}.   Note that the amd can be set up as either   big or little-endian (the tm file says which) and we can't assume   the host machine is the same.  */static voidfind_bytes (insn, insn0, insn8, insn16, insn24)     char *insn;     unsigned char *insn0;     unsigned char *insn8;     unsigned char *insn16;     unsigned char *insn24;{#if TARGET_BYTE_ORDER == BIG_ENDIAN  *insn24 = insn[0];  *insn16 = insn[1];  *insn8  = insn[2];  *insn0  = insn[3];#else /* Little-endian.  */  *insn24 = insn[3];  *insn16 = insn[2];  *insn8 = insn[1];  *insn0 = insn[0];#endif /* Little-endian.  */}/* Print one instruction from MEMADDR on STREAM.   Return the size of the instruction (always 4 on am29k).  */intprint_insn (memaddr, stream)     CORE_ADDR memaddr;     FILE *stream;{  /* The raw instruction.  */  char insn[4];  /* The four bytes of the instruction.  */  unsigned char insn24, insn16, insn8, insn0;  struct a29k_opcode *opcode;  read_memory (memaddr, &insn[0], 4);  find_bytes (insn, &insn0, &insn8, &insn16, &insn24);  /* Handle the nop (aseq 0x40,gr1,gr1) specially */  if ((insn24==0x70) && (insn16==0x40) && (insn8==0x01) && (insn0==0x01)) {    fprintf_filtered (stream,"nop");    return 4;  }  /* The opcode is always in insn24.  */  for (opcode = &a29k_opcodes[0];       opcode < &a29k_opcodes[num_opcodes];       ++opcode)    {      if ((insn24<<24) == opcode->opcode)	{	  char *s;	  	  fprintf_filtered (stream, "%s ", opcode->name);	  for (s = opcode->args; *s != '\0'; ++s)	    {	      switch (*s)		{		case 'a':		  print_general (insn8, stream);		  break;		  		case 'b':		  print_general (insn0, stream);		  break;		case 'c':		  print_general (insn16, stream);		  break;		case 'i':		  fprintf_filtered (stream, "%d", insn0);		  break;		case 'x':		  fprintf_filtered (stream, "%d", (insn16 << 8) + insn0);		  break;		case 'h':		  fprintf_filtered (stream, "0x%x",				    (insn16 << 24) + (insn0 << 16));		  break;		case 'X':		  fprintf_filtered (stream, "%d",				    ((insn16 << 8) + insn0) | 0xffff0000);		  break;		case 'P':		  /* This output looks just like absolute addressing, but		     maybe that's OK (it's what the GDB 68k and EBMON		     29k disassemblers do).  */		  /* All the shifting is to sign-extend it.  p*/		  print_address		    (memaddr +		     (((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14),		     stream);		  break;		case 'A':		  print_address ((insn16 << 10) + (insn0 << 2), stream);		  break;		case 'e':		  fprintf_filtered (stream, "%d", insn16 >> 7);		  break;		case 'n':		  fprintf_filtered (stream, "0x%x", insn16 & 0x7f);		  break;		case 'v':		  fprintf_filtered (stream, "0x%x", insn16);		  break;		case 's':		  print_special (insn8, stream);		  break;		case 'u':		  fprintf_filtered (stream, "%d", insn0 >> 7);		  break;		case 'r':		  fprintf_filtered (stream, "%d", (insn0 >> 4) & 7);		  break;		case 'd':		  fprintf_filtered (stream, "%d", (insn0 >> 2) & 3);		  break;		case 'f':		  fprintf_filtered (stream, "%d", insn0 & 3);		  break;		case 'F':		  fprintf_filtered (stream, "%d", (insn16 >> 2) & 15);		  break;		case 'C':		  fprintf_filtered (stream, "%d", insn16 & 3);		  break;		default:		  fprintf_filtered (stream, "%c", *s);		}	    }	  /* Now we look for a const,consth pair of instructions,	     in which case we try to print the symbolic address.  */	  if (insn24 == 2)  /* consth */	    {	      int errcode;	      char prev_insn[4];	      unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24;	      	      errcode = target_read_memory (memaddr - 4,					    &prev_insn[0],					    4);	      if (errcode == 0)		{		  /* If it is a delayed branch, we need to look at the		     instruction before the delayed brach to handle		     things like		     		     const _foo		     call _printf		     consth _foo		     */		  find_bytes (prev_insn, &prev_insn0, &prev_insn8,			      &prev_insn16, &prev_insn24);		  if (is_delayed_branch (prev_insn24))		    {		      errcode = target_read_memory			(memaddr - 8, &prev_insn[0], 4);		      find_bytes (prev_insn, &prev_insn0, &prev_insn8,				  &prev_insn16, &prev_insn24);		    }		}		  	      /* If there was a problem reading memory, then assume		 the previous instruction was not const.  */	      if (errcode == 0)		{		  /* Is it const to the same register?  */		  if (prev_insn24 == 3		      && prev_insn8 == insn8)		    {		      fprintf_filtered (stream, "\t; ");		      print_address (((insn16 << 24) + (insn0 << 16)				      + (prev_insn16 << 8) + (prev_insn0)),				     stream);		    }		}	    }	  return 4;	}    }  fprintf_filtered (stream, ".word 0x%8x",		    (insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);  return 4;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -