📄 sparc-stub.c
字号:
/**************************************************************************** THIS SOFTWARE IS NOT COPYRIGHTED HP offers the following for use in the public domain. HP makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.****************************************************************************//**************************************************************************** * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ * * Module name: remcom.c $ * Revision: 1.34 $ * Date: 91/03/09 12:29:49 $ * Contributor: Lake Stevens Instrument Division$ * * Description: low level support for gdb debugger. $ * * Considerations: only works on target hardware $ * * Written by: Glenn Engel $ * ModuleState: Experimental $ * * NOTES: See Below $ * * Modified for SPARC by Stu Grossman, Cygnus Support. * * To enable debugger support, two things need to happen. One, a * call to set_debug_traps() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). Breakpoint() * simulates a breakpoint by executing a trap #1. * ************* * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * bBB..BB Set baud rate to BB..BB OK or BNN, then sets * baud rate * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * ****************************************************************************/#include <string.h>#include <signal.h>#include <memory.h>/************************************************************************ * * external low-level support routines */extern putDebugChar(); /* write a single character */extern getDebugChar(); /* read and return a single char *//************************************************************************//* BUFMAX defines the maximum number of characters in inbound/outbound buffers*//* at least NUMREGBYTES*2 are needed for register packets */#define BUFMAX 2048static int initialized; /* boolean flag. != 0 means we've been initialized */static void set_mem_fault_trap();static const char hexchars[]="0123456789abcdef";#define NUMREGS 72/* Number of bytes of registers. */#define NUMREGBYTES (NUMREGS * 4)enum regnames {G0, G1, G2, G3, G4, G5, G6, G7, O0, O1, O2, O3, O4, O5, SP, O7, L0, L1, L2, L3, L4, L5, L6, L7, I0, I1, I2, I3, I4, I5, FP, I7, F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31, Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR };/*************************** ASSEMBLY CODE MACROS *************************//* */#define BREAKPOINT() asm(" ta 1");extern unsigned long rdtbr();asm(" .text .align 4! Read the TBR. .globl _rdtbr_rdtbr: retl mov %tbr, %o0! This function is called when any SPARC trap (except window overflow or! underflow) occurs. It makes sure that the invalid register window is still! available before jumping into C code. It will also restore the world if you! return from handle_exception.trap_low: mov %psr, %l0 mov %wim, %l3 srl %l3, %l0, %l4 ! wim >> cwp cmp %l4, 1 bne window_fine ! Branch if not in the invalid window nop! Handle window overflow mov %g1, %l4 ! Save g1, we use it to hold the wim srl %l3, 1, %g1 ! Rotate wim right sll %l3, 8-1, %l5 or %l5, %g1, %g1 save %g0, %g0, %g0 ! Slip into next window mov %g1, %wim ! Install the new wim std %l0, [%sp + 0 * 4] ! save L & I registers std %l2, [%sp + 2 * 4] std %l4, [%sp + 4 * 4] std %l6, [%sp + 6 * 4] std %i0, [%sp + 8 * 4] std %i2, [%sp + 10 * 4] std %i4, [%sp + 12 * 4] std %i6, [%sp + 14 * 4] restore ! Go back to trap window. mov %l4, %g1 ! Restore %g1window_fine: sub %fp, (16+1+6+1+72)*4, %sp ! Make room for input & locals ! + hidden arg + arg spill ! + doubleword alignment ! + registers[72] local var std %g0, [%fp + (-72 + 0) * 4] ! registers[Gx] std %g2, [%fp + (-72 + 2) * 4] std %g4, [%fp + (-72 + 4) * 4] std %g6, [%fp + (-72 + 6) * 4] std %i0, [%fp + (-72 + 8) * 4] ! registers[Ox] std %i2, [%fp + (-72 + 10) * 4] std %i4, [%fp + (-72 + 12) * 4] std %i6, [%fp + (-72 + 14) * 4] ! F0->F31 not implemented mov %y, %l4 mov %tbr, %l5 st %l4, [%fp + (-72 + 64) * 4] ! Y st %l0, [%fp + (-72 + 65) * 4] ! PSR st %l3, [%fp + (-72 + 66) * 4] ! WIM st %l5, [%fp + (-72 + 67) * 4] ! TBR st %l1, [%fp + (-72 + 68) * 4] ! PC st %l2, [%fp + (-72 + 69) * 4] ! NPC ! CPSR and FPSR not impl or %l0, 0xf20, %l4 mov %l4, %psr ! Turn on traps, disable interrupts call _handle_exception add %fp, -72 * 4, %o0 ! Pass address of registers restore ! Ensure that previous window is valid save %g0, %g0, %g0 ! by causing a window_underflow trap! Reload all of the registers that aren't on the stack ld [%fp + (-72 + 1) * 4], %g1 ! registers[Gx] ldd [%fp + (-72 + 2) * 4], %g2 ldd [%fp + (-72 + 4) * 4], %g4 ldd [%fp + (-72 + 6) * 4], %g6 ldd [%fp + (-72 + 8) * 4], %o0 ! registers[Ox] ldd [%fp + (-72 + 10) * 4], %o2 ldd [%fp + (-72 + 12) * 4], %o4 ldd [%fp + (-72 + 14) * 4], %o6 ldd [%fp + (-72 + 64) * 4], %l0 ! Y & PSR ldd [%fp + (-72 + 68) * 4], %l2 ! PC & NPC mov %l0, %y mov %l1, %psr ! Make sure that traps are disabled ! for rett jmpl %l2, %g0 ! Restore old PC rett %l3 ! Restore old nPC");/* Convert ch from a hex digit to an int */static inthex(ch) unsigned char ch;{ if (ch >= 'a' && ch <= 'f') return ch-'a'+10; if (ch >= '0' && ch <= '9') return ch-'0'; if (ch >= 'A' && ch <= 'F') return ch-'A'+10; return -1;}/* scan for the sequence $<data>#<checksum> */static voidgetpacket(buffer) char *buffer;{ unsigned char checksum; unsigned char xmitcsum; int i; int count; unsigned char ch; do { /* wait around for the start character, ignore all other characters */ while ((ch = getDebugChar()) != '$') ; checksum = 0; xmitcsum = -1; count = 0; /* now, read until a # or end of buffer is found */ while (count < BUFMAX) { ch = getDebugChar(); if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } if (count >= BUFMAX) continue; buffer[count] = 0; if (ch == '#') { xmitcsum = hex(getDebugChar()) << 4; xmitcsum |= hex(getDebugChar()); if (checksum != xmitcsum) putDebugChar('-'); /* failed checksum */ else { putDebugChar('+'); /* successful transfer */ /* if a sequence char is present, reply the sequence ID */ if (buffer[2] == ':') { putDebugChar(buffer[0]); putDebugChar(buffer[1]); /* remove sequence chars from buffer */ count = strlen(buffer); for (i=3; i <= count; i++) buffer[i-3] = buffer[i]; } } } } while (checksum != xmitcsum);}/* send the packet in buffer. */static voidputpacket(buffer) unsigned char *buffer;{ unsigned char checksum; int count; unsigned char ch; /* $<packet info>#<checksum>. */ do { putDebugChar('$'); checksum = 0; count = 0; while (ch = buffer[count]) { if (! putDebugChar(ch)) return; checksum += ch; count += 1; } putDebugChar('#'); putDebugChar(hexchars[checksum >> 4]); putDebugChar(hexchars[checksum & 0xf]); } while (getDebugChar() != '+');}static char remcomInBuffer[BUFMAX];static char remcomOutBuffer[BUFMAX];/* Indicate to caller of mem2hex or hex2mem that there has been an error. */static volatile int mem_err = 0;/* Convert the memory pointed to by mem into hex, placing result in buf. * Return a pointer to the last char put in buf (null), in case of mem fault, * return 0. * If MAY_FAULT is non-zero, then we will handle memory faults by returning * a 0, else treat a fault like any other fault in the stub. */static unsigned char *mem2hex(mem, buf, count, may_fault) unsigned char *mem; unsigned char *buf; int count; int may_fault;{ unsigned char ch; set_mem_fault_trap(may_fault); while (count-- > 0) { ch = *mem++; if (mem_err) return 0; *buf++ = hexchars[ch >> 4]; *buf++ = hexchars[ch & 0xf]; } *buf = 0; set_mem_fault_trap(0); return buf;}/* convert the hex array pointed to by buf into binary to be placed in mem * return a pointer to the character AFTER the last byte written */static char *hex2mem(buf, mem, count, may_fault) unsigned char *buf; unsigned char *mem; int count; int may_fault;{
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -