⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 h8300-tdep.c

📁 早期freebsd实现
💻 C
字号:
/* Target-machine dependent code for Hitachi H8/300, for GDB.   Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.This file is part of GDB.This program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 2 of the License, or(at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  *//*  Contributed by Steve Chamberlain                sac@cygnus.com  */#include "defs.h"#include "frame.h"#include "obstack.h"#include "symtab.h"#define UNSIGNED_SHORT(X) ((X) & 0xffff)/* an easy to debug H8 stack frame looks like:0x6df2	push	r20x6df3	push	r30x6df6	push	r60x	mov.w	r7,r6	subs	stuff,sp  mov.w #x,r5	                  subs  r5,sp */#define IS_PUSH(x) ((x & 0xff00)==0x6d00)#define IS_MOVE_FP(x) (x == 0x0d76)#define IS_MOV_SP_FP(x) (x == 0x0d76)#define IS_SUB2_SP(x) (x==0x1b87)#define IS_MOVK_R5(x) (x==0x7905)CORE_ADDR examine_prologue();void   frame_find_saved_regs ();CORE_ADDR h8300_skip_prologue(start_pc)CORE_ADDR start_pc;{  /* Skip past all push insns */  short int w;    w = read_memory_short(start_pc);  while (IS_PUSH(w))   {    start_pc+=2;      w = read_memory_short(start_pc);  }  /* Skip past a move to FP */  if (IS_MOVE_FP(w)) {      start_pc +=2 ;      w = read_memory_short(start_pc);    }  return start_pc;    }intprint_insn(memaddr, stream)CORE_ADDR memaddr;FILE *stream;{  /* Nothing is bigger than 8 bytes */  char   data[8];  read_memory (memaddr, data, sizeof(data));  return print_insn_h8300(memaddr,  data, stream);}          /* Given a GDB frame, determine the address of the calling function's frame.   This will be used to create a new GDB frame struct, and then   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.   For us, the frame address is its stack pointer value, so we look up   the function prologue to determine the caller's sp value, and return it.  */FRAME_ADDRFRAME_CHAIN (thisframe)     FRAME thisframe;{  frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);    return thisframe->fsr->regs[SP_REGNUM];}     /* Put here the code to store, into a struct frame_saved_regs,   the addresses of the saved registers of frame described by FRAME_INFO.   This includes special registers such as pc and fp saved in special   ways in the stack frame.  sp is even more special:   the address we return for it IS the sp for the next frame.   We cache the result of doing this in the frame_cache_obstack, since   it is fairly expensive.  */voidframe_find_saved_regs (fi, fsr)     struct frame_info *fi;     struct frame_saved_regs *fsr;{  register CORE_ADDR next_addr;  register CORE_ADDR *saved_regs;  register int regnum;  register struct frame_saved_regs *cache_fsr;  extern struct obstack frame_cache_obstack;  CORE_ADDR ip;  struct symtab_and_line sal;  CORE_ADDR limit;  if (!fi->fsr)    {      cache_fsr = (struct frame_saved_regs *)		  obstack_alloc (&frame_cache_obstack,				 sizeof (struct frame_saved_regs));      bzero (cache_fsr, sizeof (struct frame_saved_regs));      fi->fsr = cache_fsr;      /* Find the start and end of the function prologue.  If the PC	 is in the function prologue, we only consider the part that	 has executed already.  */               ip = get_pc_function_start (fi->pc);      sal = find_pc_line (ip, 0);      limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;      /* This will fill in fields in *fi as well as in cache_fsr.  */      examine_prologue (ip, limit, fi->frame, cache_fsr, fi);    }  if (fsr)    *fsr = *fi->fsr;}     /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or   is not the address of a valid instruction, the address of the next   instruction beyond ADDR otherwise.  *PWORD1 receives the first word   of the instruction.*/CORE_ADDRNEXT_PROLOGUE_INSN(addr, lim, pword1)CORE_ADDR addr;CORE_ADDR lim;short *pword1;{  if (addr < lim+8)     {    read_memory (addr, pword1, sizeof(*pword1));    SWAP_TARGET_AND_HOST (pword1, sizeof (short));    return addr + 2;  }  return 0;}/* Examine the prologue of a function.  `ip' points to the first instruction.   `limit' is the limit of the prologue (e.g. the addr of the first    linenumber, or perhaps the program counter if we're stepping through).   `frame_sp' is the stack pointer value in use in this frame.     `fsr' is a pointer to a frame_saved_regs structure into which we put   info about the registers saved by this frame.     `fi' is a struct frame_info pointer; we fill in various fields in it   to reflect the offsets of the arg pointer and the locals pointer.  *//* We will find two sorts of prologue, framefull and non framefull:      push   r2   push   r3   push   fp   mov    sp,fp   stack_ad    and   push   x   push   y   stack_ad*/static CORE_ADDRexamine_prologue (ip, limit, after_prolog_fp, fsr, fi)     register CORE_ADDR ip;     register CORE_ADDR limit;     FRAME_ADDR after_prolog_fp;     struct frame_saved_regs *fsr;     struct frame_info *fi;{  register CORE_ADDR next_ip;  int r;  int i;  int have_fp = 0;    register int src;  register struct pic_prologue_code *pcode;  INSN_WORD insn_word;  int size, offset;  unsigned int reg_save_depth = 2; /* Number of things pushed onto				      stack, starts at 2, 'cause the				      PC is already there */  unsigned int auto_depth = 0;	/* Number of bytes of autos */    char in_frame[NUM_REGS];      /* One for each reg */    memset(in_frame, 1, NUM_REGS);    if (after_prolog_fp == 0) {      after_prolog_fp = read_register(SP_REGNUM);    }    if (ip == 0 || ip & ~0xffff) return 0;  next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);  /* Skip over any push instructions, and remember where they were saved */  while (next_ip && IS_PUSH(insn_word))  {    ip = next_ip;    in_frame[insn_word & 0x7] = reg_save_depth;    next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);    reg_save_depth +=2;  }    /* Is this a move into the fp */  if (next_ip && IS_MOV_SP_FP(insn_word))   {    ip = next_ip;    next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);    have_fp = 1;      }    /* Skip over any stack adjustment, happens either with a number of     sub#2,sp or a mov #x,r5 sub r5,sp */    if (next_ip && IS_SUB2_SP(insn_word))  {    while (next_ip && IS_SUB2_SP(insn_word))     {      auto_depth +=2 ;      ip = next_ip;      next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);    }  }  else    {    if (next_ip && IS_MOVK_R5(insn_word))     {      ip = next_ip;      next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);      auto_depth += insn_word;      ip +=4;          }  }    /* The args are always reffed based from the stack pointer */  fi->args_pointer =  after_prolog_fp - auto_depth;  /* Locals are always reffed based from the fp */  fi->locals_pointer = after_prolog_fp ;  /* The PC is at a known place */  fi->from_pc = read_memory_short(after_prolog_fp + reg_save_depth-2 );    /* Rememeber any others too */  in_frame[PC_REGNUM] = 0;    for (r = 0; r < NUM_REGS; r++)   {    if (in_frame[r] != 1)     {      fsr->regs[r] = after_prolog_fp + reg_save_depth - in_frame[r] -2;    }    else    {      fsr->regs[r] = 0;    }  }	  if (have_fp)    /* We keep the old FP in the SP spot */   fsr->regs[SP_REGNUM] = (read_memory_short(fsr->regs[6])) ;  else    fsr->regs[SP_REGNUM] = after_prolog_fp + reg_save_depth;    return (ip);}voidinit_extra_frame_info (fromleaf, fi)     int fromleaf;     struct frame_info *fi;{  fi->fsr = 0;			/* Not yet allocated */  fi->args_pointer = 0;		/* Unknown */  fi->locals_pointer = 0;	/* Unknown */  fi->from_pc = 0;  }/* Return the saved PC from this frame.   If the frame has a memory copy of SRP_REGNUM, use that.  If not,   just use the register SRP_REGNUM itself.  */CORE_ADDRframe_saved_pc (frame)FRAME frame;{  return frame->from_pc;}CORE_ADDRframe_locals_address (fi)     struct frame_info *fi;{  if (!fi->locals_pointer)   {    struct frame_saved_regs ignore;    get_frame_saved_regs(fi, &ignore);    }  return fi->locals_pointer;}/* Return the address of the argument block for the frame   described by FI.  Returns 0 if the address is unknown.  */CORE_ADDRframe_args_address (fi)     struct frame_info *fi;{  if (!fi->args_pointer)   {    struct frame_saved_regs ignore;  get_frame_saved_regs(fi, &ignore);    }    return fi->args_pointer;}void h8300_pop_frame(){  unsigned regnum;  struct frame_saved_regs fsr;  struct frame_info *fi;  FRAME frame = get_current_frame();    fi = get_frame_info(frame);    get_frame_saved_regs(fi, &fsr);  for (regnum = 0; regnum < NUM_REGS; regnum ++)   {    if(fsr.regs[regnum])     {      write_register(regnum, read_memory_short (fsr.regs[regnum]));    }      flush_cached_frames();    set_current_frame(create_new_frame(read_register(FP_REGNUM),				       read_pc()));    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -