📄 expr.c
字号:
/* expr.c -operands, expressions- Copyright (C) 1987 Free Software Foundation, Inc.This file is part of GAS, the GNU Assembler.GAS is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.GAS is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with GAS; see the file COPYING. If not, write tothe Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. *//* * This is really a branch office of as-read.c. I split it out to clearly * distinguish the world of expressions from the world of statements. * (It also gives smaller files to re-compile.) * Here, "operand"s are of expressions, not instructions. */#include <ctype.h>#include "as.h"#include "flonum.h"#include "read.h"#include "struc-symbol.h"#include "expr.h"#include "obstack.h"#include "symbols.h"static void clean_up_expression(); /* Internal. */extern const char EXP_CHARS[]; /* JF hide MD floating pt stuff all the same place */extern const char FLT_CHARS[];#ifdef SUN_ASM_SYNTAXextern int local_label_defined[];#endif/* * Build any floating-point literal here. * Also build any bignum literal here. *//* LITTLENUM_TYPE generic_buffer [6]; /* JF this is a hack *//* Seems atof_machine can backscan through generic_bignum and hit whatever happens to be loaded before it in memory. And its way too complicated for me to fix right. Thus a hack. JF: Just make generic_bignum bigger, and never write into the early words, thus they'll always be zero. I hate Dean's floating-point code. Bleh. */LITTLENUM_TYPE generic_bignum [SIZE_OF_LARGE_NUMBER+6];FLONUM_TYPE generic_floating_point_number ={ & generic_bignum [6], /* low (JF: Was 0) */ & generic_bignum [SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */ 0, /* leader */ 0, /* exponent */ 0 /* sign */};/* If nonzero, we've been asked to assemble nan, +inf or -inf */int generic_floating_point_magic;/* * Summary of operand(). * * in: Input_line_pointer points to 1st char of operand, which may * be a space. * * out: A expressionS. X_seg determines how to understand the rest of the * expressionS. * The operand may have been empty: in this case X_seg == SEG_NONE. * Input_line_pointer -> (next non-blank) char after operand. * */static segToperand (expressionP) register expressionS * expressionP;{ register char c; register char *name; /* points to name of symbol */ register struct symbol * symbolP; /* Points to symbol */ extern char hex_value[]; /* In hex_value.c */ char *local_label_name(); SKIP_WHITESPACE(); /* Leading whitespace is part of operand. */ c = * input_line_pointer ++; /* Input_line_pointer -> past char in c. */ if (isdigit(c)) { register valueT number; /* offset or (absolute) value */ register short int digit; /* value of next digit in current radix */ /* invented for humans only, hope */ /* optimising compiler flushes it! */ register short int radix; /* 8, 10 or 16 */ /* 0 means we saw start of a floating- */ /* point constant. */ register short int maxdig;/* Highest permitted digit value. */ register int too_many_digits; /* If we see >= this number of */ /* digits, assume it is a bignum. */ register char * digit_2; /* -> 2nd digit of number. */ int small; /* TRUE if fits in 32 bits. */ if (c=='0') { /* non-decimal radix */ if ((c = * input_line_pointer ++)=='x' || c=='X') { c = * input_line_pointer ++; /* read past "0x" or "0X" */ maxdig = radix = 16; too_many_digits = 9; } else { /* If it says '0f' and the line ends or it DOESN'T look like a floating point #, its a local label ref. DTRT */ if(c=='f' && (! *input_line_pointer || (!index("+-.0123456789",*input_line_pointer) && !index(EXP_CHARS,*input_line_pointer)))) { maxdig = radix = 10; too_many_digits = 11; c='0'; input_line_pointer-=2; } else if (c && index (FLT_CHARS,c)) { radix = 0; /* Start of floating-point constant. */ /* input_line_pointer -> 1st char of number. */ expressionP -> X_add_number = - (isupper(c) ? tolower(c) : c); } else { /* By elimination, assume octal radix. */ radix = 8; maxdig = 10; /* Un*x sux. Compatibility. */ too_many_digits = 11; } } /* c == char after "0" or "0x" or "0X" or "0e" etc.*/ } else { maxdig = radix = 10; too_many_digits = 11; } if (radix) { /* Fixed-point integer constant. */ /* May be bignum, or may fit in 32 bits. *//* * Most numbers fit into 32 bits, and we want this case to be fast. * So we pretend it will fit into 32 bits. If, after making up a 32 * bit number, we realise that we have scanned more digits than * comfortably fit into 32 bits, we re-scan the digits coding * them into a bignum. For decimal and octal numbers we are conservative: some * numbers may be assumed bignums when in fact they do fit into 32 bits. * Numbers of any radix can have excess leading zeros: we strive * to recognise this and cast them back into 32 bits. * We must check that the bignum really is more than 32 * bits, and change it back to a 32-bit number if it fits. * The number we are looking for is expected to be positive, but * if it fits into 32 bits as an unsigned number, we let it be a 32-bit * number. The cavalier approach is for speed in ordinary cases. */ digit_2 = input_line_pointer; for (number=0; (digit=hex_value[c])<maxdig; c = * input_line_pointer ++) { number = number * radix + digit; } /* C contains character after number. */ /* Input_line_pointer -> char after C. */ small = input_line_pointer - digit_2 < too_many_digits; if ( ! small) { /* * We saw a lot of digits. Manufacture a bignum the hard way. */ LITTLENUM_TYPE * leader; /* -> high order littlenum of the bignum. */ LITTLENUM_TYPE * pointer; /* -> littlenum we are frobbing now. */ long int carry; leader = generic_bignum; generic_bignum [0] = 0; generic_bignum [1] = 0; /* We could just use digit_2, but lets be mnemonic. */ input_line_pointer = -- digit_2; /* -> 1st digit. */ c = *input_line_pointer ++; for (; (carry = hex_value [c]) < maxdig; c = * input_line_pointer ++) { for (pointer = generic_bignum; pointer <= leader; pointer ++) { long int work; work = carry + radix * * pointer; * pointer = work & LITTLENUM_MASK; carry = work >> LITTLENUM_NUMBER_OF_BITS; } if (carry) { if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1) { /* Room to grow a longer bignum. */ * ++ leader = carry; } } } /* Again, C is char after number, */ /* input_line_pointer -> after C. */ know( BITS_PER_INT == 32 ); know( LITTLENUM_NUMBER_OF_BITS == 16 ); /* Hence the constant "2" in the next line. */ if (leader < generic_bignum + 2) { /* Will fit into 32 bits. */ number = ( (generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS ) | (generic_bignum [0] & LITTLENUM_MASK); small = TRUE; } else { number = leader - generic_bignum + 1; /* Number of littlenums in the bignum. */ } } if (small) { /* * Here with number, in correct radix. c is the next char. * Note that unlike Un*x, we allow "011f" "0x9f" to * both mean the same as the (conventional) "9f". This is simply easier * than checking for strict canonical form. Syntax sux! */ if (number<10) {#ifdef SUN_ASM_SYNTAX if (c=='b' || (c=='$' && local_label_defined[number]))#else if (c=='b')#endif { /* * Backward ref to local label. * Because it is backward, expect it to be DEFINED. */ /* * Construct a local label. */ name = local_label_name ((int)number, 0); if ( (symbolP = symbol_table_lookup(name)) /* seen before */ && (symbolP -> sy_type & N_TYPE) != N_UNDF /* symbol is defined: OK */ ) { /* Expected path: symbol defined. */ /* Local labels are never absolute. Don't waste time checking absoluteness. */ know( (symbolP -> sy_type & N_TYPE) == N_DATA || (symbolP -> sy_type & N_TYPE) == N_TEXT ); expressionP -> X_add_symbol = symbolP; expressionP -> X_add_number = 0; expressionP -> X_seg = N_TYPE_seg [symbolP -> sy_type]; } else { /* Either not seen or not defined. */ as_warn( "Backw. ref to unknown label \"%d:\", 0 assumed.", number ); expressionP -> X_add_number = 0; expressionP -> X_seg = SEG_ABSOLUTE; } } else {#ifdef SUN_ASM_SYNTAX if (c=='f' || (c=='$' && !local_label_defined[number]))#else if (c=='f')#endif { /* * Forward reference. Expect symbol to be undefined or * unknown. Undefined: seen it before. Unknown: never seen * it in this pass. * Construct a local label name, then an undefined symbol. * Don't create a XSEG frag for it: caller may do that. * Just return it as never seen before. */ name = local_label_name ((int)number, 1); if ( symbolP = symbol_table_lookup( name )) { /* We have no need to check symbol properties. */ know( (symbolP -> sy_type & N_TYPE) == N_UNDF || (symbolP -> sy_type & N_TYPE) == N_DATA || (symbolP -> sy_type & N_TYPE) == N_TEXT); } else { symbolP = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag); symbol_table_insert (symbolP); } expressionP -> X_add_symbol = symbolP; expressionP -> X_seg = SEG_UNKNOWN; expressionP -> X_subtract_symbol = NULL; expressionP -> X_add_number = 0; } else { /* Really a number, not a local label. */ expressionP -> X_add_number = number; expressionP -> X_seg = SEG_ABSOLUTE; input_line_pointer --; /* Restore following character. */ } /* if (c=='f') */ } /* if (c=='b') */ } else { /* Really a number. */ expressionP -> X_add_number = number; expressionP -> X_seg = SEG_ABSOLUTE; input_line_pointer --; /* Restore following character. */ } /* if (number<10) */ } else { expressionP -> X_add_number = number; expressionP -> X_seg = SEG_BIG; input_line_pointer --; /* -> char following number. */ } /* if (small) */ } /* (If integer constant) */ else { /* input_line_pointer -> */ /* floating-point constant. */ int error_code; error_code = atof_generic (& input_line_pointer, ".", EXP_CHARS, & generic_floating_point_number); if (error_code) { if (error_code == ERROR_EXPONENT_OVERFLOW) { as_warn( "Bad floating-point constant: exponent overflow, probably assembling junk" ); } else { as_warn( "Bad floating-point constant: unknown error code=%d.", error_code); } } expressionP -> X_seg = SEG_BIG; /* input_line_pointer -> just after constant, */ /* which may point to whitespace. */ know( expressionP -> X_add_number < 0 ); /* < 0 means "floating point". */ } /* if (not floating-point constant) */ } else if(c=='.' && !is_part_of_name(*input_line_pointer)) { extern struct obstack frags; /* JF: '.' is pseudo symbol with value of current location in current segment. . . */ symbolP = symbol_new("L0\001", (unsigned char)(seg_N_TYPE[(int)now_seg]), 0, 0, (valueT)(obstack_next_free(&frags)-frag_now->fr_literal), frag_now); expressionP->X_add_number=0; expressionP->X_add_symbol=symbolP; expressionP->X_seg = now_seg; } else if ( is_name_beginner(c) ) /* here if did not begin with a digit */ { /* * Identifier begins here. * This is kludged for speed, so code is repeated. */ name = -- input_line_pointer; c = get_symbol_end(); symbolP = symbol_table_lookup(name); if (symbolP) { /* * If we have an absolute symbol, then we know it's value now. */ register segT seg; seg = N_TYPE_seg [(int) symbolP -> sy_type & N_TYPE]; if ((expressionP -> X_seg = seg) == SEG_ABSOLUTE ) { expressionP -> X_add_number = symbolP -> sy_value; } else { expressionP -> X_add_number = 0; expressionP -> X_add_symbol = symbolP; } } else { expressionP -> X_add_symbol = symbolP = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag); expressionP -> X_add_number = 0; expressionP -> X_seg = SEG_UNKNOWN; symbol_table_insert (symbolP); } * input_line_pointer = c; expressionP -> X_subtract_symbol = NULL; } else if (c=='(')/* didn't begin with digit & not a name */ { (void)expression( expressionP ); /* Expression() will pass trailing whitespace */ if ( * input_line_pointer ++ != ')' ) { as_warn( "Missing ')' assumed"); input_line_pointer --; } /* here with input_line_pointer -> char after "(...)" */ } else if ( c=='~' || c=='-' ) { /* unary operator: hope for SEG_ABSOLUTE */ switch(operand (expressionP)) { case SEG_ABSOLUTE: /* input_line_pointer -> char after operand */ if ( c=='-' ) { expressionP -> X_add_number = - expressionP -> X_add_number;/* * Notice: '-' may overflow: no warning is given. This is compatible * with other people's assemblers. Sigh. */ } else { expressionP -> X_add_number = ~ expressionP -> X_add_number; } break; case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_PASS1: case SEG_UNKNOWN: if(c=='-') { /* JF I hope this hack works */ expressionP->X_subtract_symbol=expressionP->X_add_symbol; expressionP->X_add_symbol=0; expressionP->X_seg=SEG_DIFFERENCE; break; } default: /* unary on non-absolute is unsuported */ as_warn("Unary operator %c ignored because bad operand follows", c); break; /* Expression undisturbed from operand(). */ } } else if (c=='\'') {/* * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted * for a single quote. The next character, parity errors and all, is taken * as the value of the operand. VERY KINKY. */ expressionP -> X_add_number = * input_line_pointer ++; expressionP -> X_seg = SEG_ABSOLUTE; } else { /* can't imagine any other kind of operand */ expressionP -> X_seg = SEG_NONE; input_line_pointer --; }/* * It is more 'efficient' to clean up the expressions when they are created. * Doing it here saves lines of code. */ clean_up_expression (expressionP); SKIP_WHITESPACE(); /* -> 1st char after operand. */ know( * input_line_pointer != ' ' ); return (expressionP -> X_seg);} /* operand *//* Internal. Simplify a struct expression for use by expr() *//* * In: address of a expressionS. * The X_seg field of the expressionS may only take certain values. * Now, we permit SEG_PASS1 to make code smaller & faster. * Elsewise we waste time special-case testing. Sigh. Ditto SEG_NONE. * Out: expressionS may have been modified:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -