⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 expr.c

📁 早期freebsd实现
💻 C
📖 第 1 页 / 共 2 页
字号:
/* expr.c -operands, expressions-   Copyright (C) 1987 Free Software Foundation, Inc.This file is part of GAS, the GNU Assembler.GAS is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.GAS is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with GAS; see the file COPYING.  If not, write tothe Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  *//* * This is really a branch office of as-read.c. I split it out to clearly * distinguish the world of expressions from the world of statements. * (It also gives smaller files to re-compile.) * Here, "operand"s are of expressions, not instructions. */#include <ctype.h>#include "as.h"#include "flonum.h"#include "read.h"#include "struc-symbol.h"#include "expr.h"#include "obstack.h"#include "symbols.h"static void clean_up_expression();	/* Internal. */extern const char EXP_CHARS[];	/* JF hide MD floating pt stuff all the same place */extern const char FLT_CHARS[];#ifdef SUN_ASM_SYNTAXextern int local_label_defined[];#endif/* * Build any floating-point literal here. * Also build any bignum literal here. *//* LITTLENUM_TYPE	generic_buffer [6];	/* JF this is a hack *//* Seems atof_machine can backscan through generic_bignum and hit whatever   happens to be loaded before it in memory.  And its way too complicated   for me to fix right.  Thus a hack.  JF:  Just make generic_bignum bigger,   and never write into the early words, thus they'll always be zero.   I hate Dean's floating-point code.  Bleh. */LITTLENUM_TYPE	generic_bignum [SIZE_OF_LARGE_NUMBER+6];FLONUM_TYPE	generic_floating_point_number ={  & generic_bignum [6],		/* low (JF: Was 0) */  & generic_bignum [SIZE_OF_LARGE_NUMBER+6 - 1], /* high JF: (added +6) */  0,				/* leader */  0,				/* exponent */  0				/* sign */};/* If nonzero, we've been asked to assemble nan, +inf or -inf */int generic_floating_point_magic;/* * Summary of operand(). * * in:	Input_line_pointer points to 1st char of operand, which may *	be a space. * * out:	A expressionS. X_seg determines how to understand the rest of the *	expressionS. *	The operand may have been empty: in this case X_seg == SEG_NONE. *	Input_line_pointer -> (next non-blank) char after operand. * */static segToperand (expressionP)     register expressionS *	expressionP;{  register char		c;  register char *name;	/* points to name of symbol */  register struct symbol *	symbolP; /* Points to symbol */  extern  char hex_value[];	/* In hex_value.c */  char	*local_label_name();  SKIP_WHITESPACE();		/* Leading whitespace is part of operand. */  c = * input_line_pointer ++;	/* Input_line_pointer -> past char in c. */  if (isdigit(c))    {      register valueT	number;	/* offset or (absolute) value */      register short int digit;	/* value of next digit in current radix */				/* invented for humans only, hope */				/* optimising compiler flushes it! */      register short int radix;	/* 8, 10 or 16 */				/* 0 means we saw start of a floating- */				/* point constant. */      register short int maxdig;/* Highest permitted digit value. */      register int	too_many_digits; /* If we see >= this number of */				/* digits, assume it is a bignum. */      register char *	digit_2; /* -> 2nd digit of number. */               int	small;	/* TRUE if fits in 32 bits. */      if (c=='0')	{			/* non-decimal radix */	  if ((c = * input_line_pointer ++)=='x' || c=='X')	    {	      c = * input_line_pointer ++; /* read past "0x" or "0X" */	      maxdig = radix = 16;	      too_many_digits = 9;	    }	  else	    {	      /* If it says '0f' and the line ends or it DOESN'T look like	         a floating point #, its a local label ref.  DTRT */	      if(c=='f' && (! *input_line_pointer ||			    (!index("+-.0123456789",*input_line_pointer) && 			    !index(EXP_CHARS,*input_line_pointer))))		{	          maxdig = radix = 10;		  too_many_digits = 11;		  c='0';		  input_line_pointer-=2;		}	      else if (c && index (FLT_CHARS,c))		{		  radix = 0;	/* Start of floating-point constant. */				/* input_line_pointer -> 1st char of number. */		  expressionP -> X_add_number =  - (isupper(c) ? tolower(c) : c);		}	      else		{		/* By elimination, assume octal radix. */		  radix = 8;		  maxdig = 10;	/* Un*x sux. Compatibility. */		  too_many_digits = 11;		}	    }	  /* c == char after "0" or "0x" or "0X" or "0e" etc.*/	}      else	{	  maxdig = radix = 10;	  too_many_digits = 11;	}      if (radix)	{			/* Fixed-point integer constant. */				/* May be bignum, or may fit in 32 bits. *//* * Most numbers fit into 32 bits, and we want this case to be fast. * So we pretend it will fit into 32 bits. If, after making up a 32 * bit number, we realise that we have scanned more digits than * comfortably fit into 32 bits, we re-scan the digits coding * them into a bignum. For decimal and octal numbers we are conservative: some * numbers may be assumed bignums when in fact they do fit into 32 bits. * Numbers of any radix can have excess leading zeros: we strive * to recognise this and cast them back into 32 bits. * We must check that the bignum really is more than 32 * bits, and change it back to a 32-bit number if it fits. * The number we are looking for is expected to be positive, but * if it fits into 32 bits as an unsigned number, we let it be a 32-bit * number. The cavalier approach is for speed in ordinary cases. */	  digit_2 = input_line_pointer;	  for (number=0;  (digit=hex_value[c])<maxdig;  c = * input_line_pointer ++)	    {	      number = number * radix + digit;	    }	  /* C contains character after number. */	  /* Input_line_pointer -> char after C. */	  small = input_line_pointer - digit_2 < too_many_digits;	  if ( ! small)	    {	      /*	       * We saw a lot of digits. Manufacture a bignum the hard way.	       */	      LITTLENUM_TYPE *	leader;	/* -> high order littlenum of the bignum. */	      LITTLENUM_TYPE *	pointer; /* -> littlenum we are frobbing now. */	      long int		carry;	      leader = generic_bignum;	      generic_bignum [0] = 0;	      generic_bignum [1] = 0;				/* We could just use digit_2, but lets be mnemonic. */	      input_line_pointer = -- digit_2; /* -> 1st digit. */	      c = *input_line_pointer ++;	      for (;   (carry = hex_value [c]) < maxdig;   c = * input_line_pointer ++)		{		  for (pointer = generic_bignum;		       pointer <= leader;		       pointer ++)		    {		      long int	work;		      work = carry + radix * * pointer;		      * pointer = work & LITTLENUM_MASK;		      carry = work >> LITTLENUM_NUMBER_OF_BITS;		    }		  if (carry)		    {		      if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)			{	/* Room to grow a longer bignum. */			  * ++ leader = carry;			}		    }		}	      /* Again, C is char after number, */	      /* input_line_pointer -> after C. */	      know( BITS_PER_INT == 32 );	      know( LITTLENUM_NUMBER_OF_BITS == 16 );	      /* Hence the constant "2" in the next line. */	      if (leader < generic_bignum + 2)		{		/* Will fit into 32 bits. */		  number =		    ( (generic_bignum [1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS )		    | (generic_bignum [0] & LITTLENUM_MASK);		  small = TRUE;		}	      else		{		  number = leader - generic_bignum + 1;	/* Number of littlenums in the bignum. */		}	    }	  if (small)	    {	      /*	       * Here with number, in correct radix. c is the next char.	       * Note that unlike Un*x, we allow "011f" "0x9f" to	       * both mean the same as the (conventional) "9f". This is simply easier	       * than checking for strict canonical form. Syntax sux!	       */	      if (number<10)		{#ifdef SUN_ASM_SYNTAX		  if (c=='b' || (c=='$' && local_label_defined[number]))#else		  if (c=='b')#endif		    {		      /*		       * Backward ref to local label.		       * Because it is backward, expect it to be DEFINED.		       */		      /*		       * Construct a local label.		       */		      name = local_label_name ((int)number, 0);		      if ( (symbolP = symbol_table_lookup(name)) /* seen before */			  && (symbolP -> sy_type & N_TYPE) != N_UNDF /* symbol is defined: OK */			  )			{		/* Expected path: symbol defined. */			  /* Local labels are never absolute. Don't waste time checking absoluteness. */			  know(   (symbolP -> sy_type & N_TYPE) == N_DATA			       || (symbolP -> sy_type & N_TYPE) == N_TEXT );			  expressionP -> X_add_symbol = symbolP;			  expressionP -> X_add_number = 0;			  expressionP -> X_seg	      = N_TYPE_seg [symbolP -> sy_type];			}		      else			{		/* Either not seen or not defined. */			  as_warn( "Backw. ref to unknown label \"%d:\", 0 assumed.",				  number				  );			  expressionP -> X_add_number = 0;			  expressionP -> X_seg        = SEG_ABSOLUTE;			}		    }		  else		    {#ifdef SUN_ASM_SYNTAX		      if (c=='f' || (c=='$' && !local_label_defined[number]))#else		      if (c=='f')#endif			{			  /*			   * Forward reference. Expect symbol to be undefined or			   * unknown. Undefined: seen it before. Unknown: never seen			   * it in this pass.			   * Construct a local label name, then an undefined symbol.			   * Don't create a XSEG frag for it: caller may do that.			   * Just return it as never seen before.			   */			  name = local_label_name ((int)number, 1);			  if ( symbolP = symbol_table_lookup( name ))			    {			      /* We have no need to check symbol properties. */			      know(   (symbolP -> sy_type & N_TYPE) == N_UNDF				   || (symbolP -> sy_type & N_TYPE) == N_DATA				   || (symbolP -> sy_type & N_TYPE) == N_TEXT);			    }			  else			    {			      symbolP = symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag);			      symbol_table_insert (symbolP);			    }			  expressionP -> X_add_symbol      = symbolP;			  expressionP -> X_seg             = SEG_UNKNOWN;			  expressionP -> X_subtract_symbol = NULL;			  expressionP -> X_add_number      = 0;			}		      else			{		/* Really a number, not a local label. */			  expressionP -> X_add_number = number;			  expressionP -> X_seg        = SEG_ABSOLUTE;			  input_line_pointer --; /* Restore following character. */			}		/* if (c=='f') */		    }			/* if (c=='b') */		}	      else		{			/* Really a number. */		  expressionP -> X_add_number = number;		  expressionP -> X_seg        = SEG_ABSOLUTE;		  input_line_pointer --; /* Restore following character. */		}			/* if (number<10) */	    }	  else	    {	      expressionP -> X_add_number = number;	      expressionP -> X_seg = SEG_BIG;	      input_line_pointer --; /* -> char following number. */	    }			/* if (small) */	}			/* (If integer constant) */      else	{			/* input_line_pointer -> */				/* floating-point constant. */	  int error_code;	  error_code = atof_generic	    (& input_line_pointer, ".", EXP_CHARS,	     & generic_floating_point_number);	  if (error_code)	    {	      if (error_code == ERROR_EXPONENT_OVERFLOW)		{		  as_warn( "Bad floating-point constant: exponent overflow, probably assembling junk" );		}	      else		{	      		  as_warn( "Bad floating-point constant: unknown error code=%d.", error_code);		}	    }	  expressionP -> X_seg = SEG_BIG;				/* input_line_pointer -> just after constant, */				/* which may point to whitespace. */	  know( expressionP -> X_add_number < 0 ); /* < 0 means "floating point". */	}			/* if (not floating-point constant) */    }  else if(c=='.' && !is_part_of_name(*input_line_pointer)) {    extern struct obstack frags;    /*       JF:  '.' is pseudo symbol with value of current location in current       segment. . .     */    symbolP = symbol_new("L0\001",			 (unsigned char)(seg_N_TYPE[(int)now_seg]),			 0,			 0,			 (valueT)(obstack_next_free(&frags)-frag_now->fr_literal),			 frag_now);    expressionP->X_add_number=0;    expressionP->X_add_symbol=symbolP;    expressionP->X_seg = now_seg;  } else if ( is_name_beginner(c) ) /* here if did not begin with a digit */    {      /*       * Identifier begins here.       * This is kludged for speed, so code is repeated.       */      name =  -- input_line_pointer;      c = get_symbol_end();      symbolP = symbol_table_lookup(name);      if (symbolP)	    {          /*           * If we have an absolute symbol, then we know it's value now.           */          register segT    	seg;          seg = N_TYPE_seg [(int) symbolP -> sy_type & N_TYPE];          if ((expressionP -> X_seg = seg) == SEG_ABSOLUTE )	    {	      expressionP -> X_add_number = symbolP -> sy_value;	    }	  else	    {	      expressionP -> X_add_number  = 0;	      expressionP -> X_add_symbol  = symbolP;	    }	}      else	{	  expressionP -> X_add_symbol		= symbolP		= symbol_new (name, N_UNDF, 0,0,0, & zero_address_frag);	  expressionP -> X_add_number  = 0;	  expressionP -> X_seg         = SEG_UNKNOWN;	  symbol_table_insert (symbolP);	}      * input_line_pointer = c;      expressionP -> X_subtract_symbol = NULL;    }  else if (c=='(')/* didn't begin with digit & not a name */    {      (void)expression( expressionP );      /* Expression() will pass trailing whitespace */      if ( * input_line_pointer ++ != ')' )	{	  as_warn( "Missing ')' assumed");	  input_line_pointer --;	}      /* here with input_line_pointer -> char after "(...)" */    }  else if ( c=='~' || c=='-' )    {		/* unary operator: hope for SEG_ABSOLUTE */      switch(operand (expressionP)) {      case SEG_ABSOLUTE:		    /* input_line_pointer -> char after operand */	if ( c=='-' )	  {	    expressionP -> X_add_number = - expressionP -> X_add_number;/* * Notice: '-' may  overflow: no warning is given. This is compatible * with other people's assemblers. Sigh. */	  }	else	  {	    expressionP -> X_add_number = ~ expressionP -> X_add_number;	  }	  break;      case SEG_TEXT:      case SEG_DATA:      case SEG_BSS:      case SEG_PASS1:      case SEG_UNKNOWN:	if(c=='-') {		/* JF I hope this hack works */	  expressionP->X_subtract_symbol=expressionP->X_add_symbol;	  expressionP->X_add_symbol=0;	  expressionP->X_seg=SEG_DIFFERENCE;	  break;	}      default:		/* unary on non-absolute is unsuported */	as_warn("Unary operator %c ignored because bad operand follows", c);	break;	/* Expression undisturbed from operand(). */      }    }  else if (c=='\'')    {/* * Warning: to conform to other people's assemblers NO ESCAPEMENT is permitted * for a single quote. The next character, parity errors and all, is taken * as the value of the operand. VERY KINKY. */      expressionP -> X_add_number = * input_line_pointer ++;      expressionP -> X_seg        = SEG_ABSOLUTE;    }  else    {		      /* can't imagine any other kind of operand */      expressionP -> X_seg = SEG_NONE;      input_line_pointer --;    }/* * It is more 'efficient' to clean up the expressions when they are created. * Doing it here saves lines of code. */  clean_up_expression (expressionP);  SKIP_WHITESPACE();		/* -> 1st char after operand. */  know( * input_line_pointer != ' ' );  return (expressionP -> X_seg);}				/* operand *//* Internal. Simplify a struct expression for use by expr() *//* * In:	address of a expressionS. *	The X_seg field of the expressionS may only take certain values. *	Now, we permit SEG_PASS1 to make code smaller & faster. *	Elsewise we waste time special-case testing. Sigh. Ditto SEG_NONE. * Out:	expressionS may have been modified:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -