📄 rs6000.c
字号:
fprintf (file, "u"); return; case 'I': /* Print `i' is this is a constant, else nothing. */ if (INT_P (x)) fprintf (file, "i"); return; case 'N': /* Write the number of elements in the vector times 4. */ if (GET_CODE (x) != PARALLEL) output_operand_lossage ("invalid %%N value"); fprintf (file, "%d", XVECLEN (x, 0) * 4); return; case 'O': /* Similar, but subtract 1 first. */ if (GET_CODE (x) != PARALLEL) output_operand_lossage ("invalid %%N value"); fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4); return; case 'P': /* The operand must be an indirect memory reference. The result is the register number. */ if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG || REGNO (XEXP (x, 0)) >= 32) output_operand_lossage ("invalid %%P value"); fprintf (file, "%d", REGNO (XEXP (x, 0))); return; case 'L': /* Write second word of DImode or DFmode reference. Works on register or non-indexed memory only. */ if (GET_CODE (x) == REG) fprintf (file, "%d", REGNO (x) + 1); else if (GET_CODE (x) == MEM) { /* Handle possible auto-increment. Since it is pre-increment and we have already done it, we can just use an offset of four. */ if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4)); else output_address (plus_constant (XEXP (x, 0), 4)); } return; case 'Y': /* Similar, for third word of TImode */ if (GET_CODE (x) == REG) fprintf (file, "%d", REGNO (x) + 2); else if (GET_CODE (x) == MEM) { if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8)); else output_address (plus_constant (XEXP (x, 0), 8)); } return; case 'Z': /* Similar, for last word of TImode. */ if (GET_CODE (x) == REG) fprintf (file, "%d", REGNO (x) + 3); else if (GET_CODE (x) == MEM) { if (GET_CODE (XEXP (x, 0)) == PRE_INC || GET_CODE (XEXP (x, 0)) == PRE_DEC) output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12)); else output_address (plus_constant (XEXP (x, 0), 12)); } return; case 't': /* Write 12 if this jump operation will branch if true, 4 otherwise. All floating-point operations except NE branch true and integer EQ, LT, GT, LTU and GTU also branch true. */ if (GET_RTX_CLASS (GET_CODE (x)) != '<') output_operand_lossage ("invalid %%t value"); else if ((GET_MODE (XEXP (x, 0)) == CCFPmode && GET_CODE (x) != NE) || GET_CODE (x) == EQ || GET_CODE (x) == LT || GET_CODE (x) == GT || GET_CODE (x) == LTU || GET_CODE (x) == GTU) fprintf (file, "12"); else fprintf (file, "4"); return; case 'T': /* Opposite of 't': write 4 if this jump operation will branch if true, 12 otherwise. */ if (GET_RTX_CLASS (GET_CODE (x)) != '<') output_operand_lossage ("invalid %%t value"); else if ((GET_MODE (XEXP (x, 0)) == CCFPmode && GET_CODE (x) != NE) || GET_CODE (x) == EQ || GET_CODE (x) == LT || GET_CODE (x) == GT || GET_CODE (x) == LTU || GET_CODE (x) == GTU) fprintf (file, "4"); else fprintf (file, "12"); return; case 'j': /* Write the bit number in CCR for jump. */ i = ccr_bit (x, 0); if (i == -1) output_operand_lossage ("invalid %%j code"); else fprintf (file, "%d", i); return; case 'J': /* Similar, but add one for shift count in rlinm for scc and pass scc flag to `ccr_bit'. */ i = ccr_bit (x, 1); if (i == -1) output_operand_lossage ("invalid %%J code"); else fprintf (file, "%d", i + 1); return; case 'C': /* This is an optional cror needed for LE or GE floating-point comparisons. Otherwise write nothing. */ if ((GET_CODE (x) == LE || GET_CODE (x) == GE) && GET_MODE (XEXP (x, 0)) == CCFPmode) { int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68); fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3, base_bit + 2, base_bit + (GET_CODE (x) == GE)); } return; case 'D': /* Similar, except that this is for an scc, so we must be able to encode the test in a single bit that is one. We do the above for any LE, GE, GEU, or LEU and invert the bit for NE. */ if (GET_CODE (x) == LE || GET_CODE (x) == GE || GET_CODE (x) == LEU || GET_CODE (x) == GEU) { int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68); fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3, base_bit + 2, base_bit + (GET_CODE (x) == GE || GET_CODE (x) == GEU)); } else if (GET_CODE (x) == NE) { int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68); fprintf (file, "crnor %d,%d,%d\n\t", base_bit + 3, base_bit + 2, base_bit + 2); } return; case 'z': /* X is a SYMBOL_REF. Write out the name preceded by a period and without any trailing data in brackets. Used for function names. */ if (GET_CODE (x) != SYMBOL_REF) abort (); fprintf (file, "."); RS6000_OUTPUT_BASENAME (file, XSTR (x, 0)); return; case 'A': /* If X is a constant integer whose low-order 5 bits are zero, write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug in the RS/6000 assembler where "sri" with a zero shift count write a trash instruction. */ if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0) fprintf (file, "l"); else fprintf (file, "r"); return; case 0: if (GET_CODE (x) == REG) fprintf (file, "%s", reg_names[REGNO (x)]); else if (GET_CODE (x) == MEM) { /* We need to handle PRE_INC and PRE_DEC here, since we need to know the width from the mode. */ if (GET_CODE (XEXP (x, 0)) == PRE_INC) fprintf (file, "%d(%d)", GET_MODE_SIZE (GET_MODE (x)), REGNO (XEXP (XEXP (x, 0), 0))); else if (GET_CODE (XEXP (x, 0)) == PRE_DEC) fprintf (file, "%d(%d)", - GET_MODE_SIZE (GET_MODE (x)), REGNO (XEXP (XEXP (x, 0), 0))); else output_address (XEXP (x, 0)); } else output_addr_const (file, x); break; default: output_operand_lossage ("invalid %%xn code"); }}/* Print the address of an operand. */voidprint_operand_address (file, x) FILE *file; register rtx x;{ if (GET_CODE (x) == REG) fprintf (file, "0(%d)", REGNO (x)); else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST) { output_addr_const (file, x); fprintf (file, "(2)"); } else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG) { if (REGNO (XEXP (x, 0)) == 0) fprintf (file, "%d,%d", REGNO (XEXP (x, 1)), REGNO (XEXP (x, 0))); else fprintf (file, "%d,%d", REGNO (XEXP (x, 0)), REGNO (XEXP (x, 1))); } else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT) fprintf (file, "%d(%d)", INTVAL (XEXP (x, 1)), REGNO (XEXP (x, 0))); else abort ();}/* This page contains routines that are used to determine what the function prologue and epilogue code will do and write them out. *//* Return the first fixed-point register that is required to be saved. 32 if none. */intfirst_reg_to_save (){ int first_reg; /* Find lowest numbered live register. */ for (first_reg = 13; first_reg <= 31; first_reg++) if (regs_ever_live[first_reg]) break; /* If profiling, then we must save/restore every register that contains a parameter before/after the .mcount call. Use registers from 30 down to 23 to do this. Don't use the frame pointer in reg 31. For now, save enough room for all of the parameter registers. */ if (profile_flag) if (first_reg > 23) first_reg = 23; return first_reg;}/* Similar, for FP regs. */intfirst_fp_reg_to_save (){ int first_reg; /* Find lowest numbered live register. */ for (first_reg = 14 + 32; first_reg <= 63; first_reg++) if (regs_ever_live[first_reg]) break; return first_reg;}/* Return 1 if we need to save CR. */intmust_save_cr (){ return regs_ever_live[70] || regs_ever_live[71] || regs_ever_live[72];}/* Compute the size of the save area in the stack, including the space for the fixed area. */intrs6000_sa_size (){ int size; int i; /* We have the six fixed words, plus the size of the register save areas, rounded to a double-word. */ size = 6 + (32 - first_reg_to_save ()) + (64 - first_fp_reg_to_save ()) * 2; if (size & 1) size++; return size * 4;}/* Return non-zero if this function makes calls. */intrs6000_makes_calls (){ rtx insn; for (insn = get_insns (); insn; insn = next_insn (insn)) if (GET_CODE (insn) == CALL_INSN) return 1; return 0;}/* Return non-zero if this function needs to push space on the stack. */intrs6000_pushes_stack (){ int total_size = (rs6000_sa_size () + get_frame_size () + current_function_outgoing_args_size); /* We need to push the stack if a frame pointer is needed (because the stack might be dynamically adjusted), if we are debugging, if the total stack size is more than 220 bytes, or if we make calls. */ return (frame_pointer_needed || write_symbols != NO_DEBUG || total_size > 220 || rs6000_makes_calls ());}/* Write function prologue. */voidoutput_prolog (file, size) FILE *file; int size;{ int first_reg = first_reg_to_save (); int must_push = rs6000_pushes_stack (); int first_fp_reg = first_fp_reg_to_save (); int basic_size = rs6000_sa_size (); int total_size = (basic_size + size + current_function_outgoing_args_size); /* Round size to multiple of 8 bytes. */ total_size = (total_size + 7) & ~7; /* Write .extern for any function we will call to save and restore fp values. */ if (first_fp_reg < 62) fprintf (file, "\t.extern ._savef%d\n\t.extern ._restf%d\n", first_fp_reg - 32, first_fp_reg - 32); /* Write .extern for truncation routines, if needed. */ if (rs6000_trunc_used && ! trunc_defined) { fprintf (file, "\t.extern .itrunc\n\t.extern .uitrunc\n"); trunc_defined = 1; } /* If we have to call a function to save fpr's, or if we are doing profiling, then we will be using LR. */ if (first_fp_reg < 62 || profile_flag) regs_ever_live[65] = 1; /* If we use the link register, get it into r0. */ if (regs_ever_live[65]) fprintf (file, "\tmflr 0\n"); /* If we need to save CR, put it into r12. */ if (must_save_cr ()) fprintf (file, "\tmfcr 12\n"); /* Do any required saving of fpr's. If only one or two to save, do it ourself. Otherwise, call function. */ if (first_fp_reg == 62) fprintf (file, "\tstfd 30,-16(1)\n\tstfd 31,-8(1)\n"); else if (first_fp_reg == 63) fprintf (file, "\tstfd 31,-8(1)\n"); else if (first_fp_reg != 64) fprintf (file, "\tbl ._savef%d\n\tcror 15,15,15\n", first_fp_reg - 32); /* Now save gpr's. */ if (first_reg == 31) fprintf (file, "\tst 31,%d(1)\n", -4 - (64 - first_fp_reg) * 8); else if (first_reg != 32) fprintf (file, "\tstm %d,%d(1)\n", first_reg, - (32 - first_reg) * 4 - (64 - first_fp_reg) * 8); /* Save lr if we used it. */ if (regs_ever_live[65]) fprintf (file, "\tst 0,8(1)\n"); /* Save CR if we use any that must be preserved. */ if (must_save_cr ()) fprintf (file, "\tst 12,4(1)\n"); /* Update stack and set back pointer. */ if (must_push) { if (total_size < 32767) fprintf (file, "\tstu 1,%d(1)\n", - total_size); else { fprintf (file, "\tcau 0,0,%d\n\toril 0,0,%d\n", (total_size >> 16) & 0xffff, total_size & 0xffff); fprintf (file, "\tsf 12,0,1\n\tst 1,0(12)\n\toril 1,12,0\n"); } } /* Set frame pointer, if needed. */ if (frame_pointer_needed) fprintf (file, "\toril 31,1,0\n");}/* Write function epilogue. */voidoutput_epilog (file, size) FILE *file; int size;{ int first_reg = first_reg_to_save (); int must_push = rs6000_pushes_stack (); int first_fp_reg = first_fp_reg_to_save (); int basic_size = rs6000_sa_size (); int total_size = (basic_size + size + current_function_outgoing_args_size); rtx insn = get_last_insn (); /* Round size to multiple of 8 bytes. */ total_size = (total_size + 7) & ~7; /* If the last insn was a BARRIER, we don't have to write anything except the trace table. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn == 0 || GET_CODE (insn) != BARRIER) { /* If we have a frame pointer, a call to alloca, or a large stack frame, restore the old stack pointer using the backchain. Otherwise, we know what size to update it with. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -