⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fpu_implode.c

📁 早期freebsd实现
💻 C
字号:
/* * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: *	This product includes software developed by the University of *	California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93 * * from: $Header: fpu_implode.c,v 1.5 92/11/26 01:39:49 torek Exp $ *//* * FPU subroutines: `implode' internal format numbers into the machine's * `packed binary' format. */#include <sys/types.h>#include <machine/ieee.h>#include <machine/instr.h>#include <machine/reg.h>#include <sparc/fpu/fpu_arith.h>#include <sparc/fpu/fpu_emu.h>/* * Round a number (algorithm from Motorola MC68882 manual, modified for * our internal format).  Set inexact exception if rounding is required. * Return true iff we rounded up. * * After rounding, we discard the guard and round bits by shifting right * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). * This saves effort later. * * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's * responsibility to fix this if necessary. */static intround(register struct fpemu *fe, register struct fpn *fp){	register u_int m0, m1, m2, m3;	register int gr, s, ret;	m0 = fp->fp_mant[0];	m1 = fp->fp_mant[1];	m2 = fp->fp_mant[2];	m3 = fp->fp_mant[3];	gr = m3 & 3;	s = fp->fp_sticky;	/* mant >>= FP_NG */	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));	m0 >>= FP_NG;	if ((gr | s) == 0)	/* result is exact: no rounding needed */		goto rounddown;	fe->fe_cx |= FSR_NX;	/* inexact */	/* Go to rounddown to round down; break to round up. */	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {	case FSR_RD_RN:	default:		/*		 * Round only if guard is set (gr & 2).  If guard is set,		 * but round & sticky both clear, then we want to round		 * but have a tie, so round to even, i.e., add 1 iff odd.		 */		if ((gr & 2) == 0)			goto rounddown;		if ((gr & 1) || fp->fp_sticky || (m3 & 1))			break;		goto rounddown;	case FSR_RD_RZ:		/* Round towards zero, i.e., down. */		goto rounddown;	case FSR_RD_RM:		/* Round towards -Inf: up if negative, down if positive. */		if (fp->fp_sign)			break;		goto rounddown;	case FSR_RD_RP:		/* Round towards +Inf: up if positive, down otherwise. */		if (!fp->fp_sign)			break;		goto rounddown;	}	/* Bump low bit of mantissa, with carry. */#ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */	FPU_ADDS(m3, m3, 1);	FPU_ADDCS(m2, m2, 0);	FPU_ADDCS(m1, m1, 0);	FPU_ADDC(m0, m0, 0);#else	if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)		m0++;#endif	fp->fp_mant[0] = m0;	fp->fp_mant[1] = m1;	fp->fp_mant[2] = m2;	fp->fp_mant[3] = m3;	return (1);rounddown:	fp->fp_mant[0] = m0;	fp->fp_mant[1] = m1;	fp->fp_mant[2] = m2;	fp->fp_mant[3] = m3;	return (0);}/* * For overflow: return true if overflow is to go to +/-Inf, according * to the sign of the overflowing result.  If false, overflow is to go * to the largest magnitude value instead. */static inttoinf(struct fpemu *fe, int sign){	int inf;	/* look at rounding direction */	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {	default:	case FSR_RD_RN:		/* the nearest value is always Inf */		inf = 1;		break;	case FSR_RD_RZ:		/* toward 0 => never towards Inf */		inf = 0;		break;	case FSR_RD_RP:		/* toward +Inf iff positive */		inf = sign == 0;		break;	case FSR_RD_RM:		/* toward -Inf iff negative */		inf = sign;		break;	}	return (inf);}/* * fpn -> int (int value returned as return value). * * N.B.: this conversion always rounds towards zero (this is a peculiarity * of the SPARC instruction set). */u_intfpu_ftoi(fe, fp)	struct fpemu *fe;	register struct fpn *fp;{	register u_int i;	register int sign, exp;	sign = fp->fp_sign;	switch (fp->fp_class) {	case FPC_ZERO:		return (0);	case FPC_NUM:		/*		 * If exp >= 2^32, overflow.  Otherwise shift value right		 * into last mantissa word (this will not exceed 0xffffffff),		 * shifting any guard and round bits out into the sticky		 * bit.  Then ``round'' towards zero, i.e., just set an		 * inexact exception if sticky is set (see round()).		 * If the result is > 0x80000000, or is positive and equals		 * 0x80000000, overflow; otherwise the last fraction word		 * is the result.		 */		if ((exp = fp->fp_exp) >= 32)			break;		/* NB: the following includes exp < 0 cases */		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)			fe->fe_cx |= FSR_NX;		i = fp->fp_mant[3];		if (i >= ((u_int)0x80000000 + sign))			break;		return (sign ? -i : i);	default:		/* Inf, qNaN, sNaN */		break;	}	/* overflow: replace any inexact exception with invalid */	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;	return (0x7fffffff + sign);}/* * fpn -> single (32 bit single returned as return value). * We assume <= 29 bits in a single-precision fraction (1.f part). */u_intfpu_ftos(fe, fp)	struct fpemu *fe;	register struct fpn *fp;{	register u_int sign = fp->fp_sign << 31;	register int exp;#define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */#define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */	/* Take care of non-numbers first. */	if (ISNAN(fp)) {		/*		 * Preserve upper bits of NaN, per SPARC V8 appendix N.		 * Note that fp->fp_mant[0] has the quiet bit set,		 * even if it is classified as a signalling NaN.		 */		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);		exp = SNG_EXP_INFNAN;		goto done;	}	if (ISINF(fp))		return (sign | SNG_EXP(SNG_EXP_INFNAN));	if (ISZERO(fp))		return (sign);	/*	 * Normals (including subnormals).  Drop all the fraction bits	 * (including the explicit ``implied'' 1 bit) down into the	 * single-precision range.  If the number is subnormal, move	 * the ``implied'' 1 into the explicit range as well, and shift	 * right to introduce leading zeroes.  Rounding then acts	 * differently for normals and subnormals: the largest subnormal	 * may round to the smallest normal (1.0 x 2^minexp), or may	 * remain subnormal.  In the latter case, signal an underflow	 * if the result was inexact or if underflow traps are enabled.	 *	 * Rounding a normal, on the other hand, always produces another	 * normal (although either way the result might be too big for	 * single precision, and cause an overflow).  If rounding a	 * normal produces 2.0 in the fraction, we need not adjust that	 * fraction at all, since both 1.0 and 2.0 are zero under the	 * fraction mask.	 *	 * Note that the guard and round bits vanish from the number after	 * rounding.	 */	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))			return (sign | SNG_EXP(1) | 0);		if ((fe->fe_cx & FSR_NX) ||		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))			fe->fe_cx |= FSR_UF;		return (sign | SNG_EXP(0) | fp->fp_mant[3]);	}	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);#ifdef DIAGNOSTIC	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)		panic("fpu_ftos");#endif	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))		exp++;	if (exp >= SNG_EXP_INFNAN) {		/* overflow to inf or to max single */		fe->fe_cx |= FSR_OF | FSR_NX;		if (toinf(fe, sign))			return (sign | SNG_EXP(SNG_EXP_INFNAN));		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);	}done:	/* phew, made it */	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));}/* * fpn -> double (32 bit high-order result returned; 32-bit low order result * left in res[1]).  Assumes <= 61 bits in double precision fraction. * * This code mimics fpu_ftos; see it for comments. */u_intfpu_ftod(fe, fp, res)	struct fpemu *fe;	register struct fpn *fp;	u_int *res;{	register u_int sign = fp->fp_sign << 31;	register int exp;#define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))#define	DBL_MASK	(DBL_EXP(1) - 1)	if (ISNAN(fp)) {		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);		exp = DBL_EXP_INFNAN;		goto done;	}	if (ISINF(fp)) {		sign |= DBL_EXP(DBL_EXP_INFNAN);		goto zero;	}	if (ISZERO(fp)) {zero:		res[1] = 0;		return (sign);	}	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {			res[1] = 0;			return (sign | DBL_EXP(1) | 0);		}		if ((fe->fe_cx & FSR_NX) ||		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))			fe->fe_cx |= FSR_UF;		exp = 0;		goto done;	}	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))		exp++;	if (exp >= DBL_EXP_INFNAN) {		fe->fe_cx |= FSR_OF | FSR_NX;		if (toinf(fe, sign)) {			res[1] = 0;			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);		}		res[1] = ~0;		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);	}done:	res[1] = fp->fp_mant[3];	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));}/* * fpn -> extended (32 bit high-order result returned; low-order fraction * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but * our internal format *is* extended precision, plus 2 bits for guard/round, * so we can avoid a small bit of work. */u_intfpu_ftox(fe, fp, res)	struct fpemu *fe;	register struct fpn *fp;	u_int *res;{	register u_int sign = fp->fp_sign << 31;	register int exp;#define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))#define	EXT_MASK	(EXT_EXP(1) - 1)	if (ISNAN(fp)) {		(void) fpu_shr(fp, 2);	/* since we are not rounding */		exp = EXT_EXP_INFNAN;		goto done;	}	if (ISINF(fp)) {		sign |= EXT_EXP(EXT_EXP_INFNAN);		goto zero;	}	if (ISZERO(fp)) {zero:		res[1] = res[2] = res[3] = 0;		return (sign);	}	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);		if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {			res[1] = res[2] = res[3] = 0;			return (sign | EXT_EXP(1) | 0);		}		if ((fe->fe_cx & FSR_NX) ||		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))			fe->fe_cx |= FSR_UF;		exp = 0;		goto done;	}	/* Since internal == extended, no need to shift here. */	if (round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))		exp++;	if (exp >= EXT_EXP_INFNAN) {		fe->fe_cx |= FSR_OF | FSR_NX;		if (toinf(fe, sign)) {			res[1] = res[2] = res[3] = 0;			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);		}		res[1] = res[2] = res[3] = ~0;		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);	}done:	res[1] = fp->fp_mant[1];	res[2] = fp->fp_mant[2];	res[3] = fp->fp_mant[3];	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));}/* * Implode an fpn, writing the result into the given space. */voidfpu_implode(fe, fp, type, space)	struct fpemu *fe;	register struct fpn *fp;	int type;	register u_int *space;{	switch (type) {	case FTYPE_INT:		space[0] = fpu_ftoi(fe, fp);		break;	case FTYPE_SNG:		space[0] = fpu_ftos(fe, fp);		break;	case FTYPE_DBL:		space[0] = fpu_ftod(fe, fp, space);		break;	case FTYPE_EXT:		/* funky rounding precision options ?? */		space[0] = fpu_ftox(fe, fp, space);		break;	default:		panic("fpu_implode");	}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -