📄 kern_sig.c
字号:
* Send a signal to a process group. If checktty is 1, * limit to members which have a controlling terminal. */voidpgsignal(pgrp, signum, checkctty) struct pgrp *pgrp; int signum, checkctty;{ register struct proc *p; if (pgrp) for (p = pgrp->pg_mem; p != NULL; p = p->p_pgrpnxt) if (checkctty == 0 || p->p_flag & P_CONTROLT) psignal(p, signum);}/* * Send a signal caused by a trap to the current process. * If it will be caught immediately, deliver it with correct code. * Otherwise, post it normally. */voidtrapsignal(p, signum, code) struct proc *p; register int signum; u_int code;{ register struct sigacts *ps = p->p_sigacts; int mask; mask = sigmask(signum); if ((p->p_flag & P_TRACED) == 0 && (p->p_sigcatch & mask) != 0 && (p->p_sigmask & mask) == 0) { p->p_stats->p_ru.ru_nsignals++;#ifdef KTRACE if (KTRPOINT(p, KTR_PSIG)) ktrpsig(p->p_tracep, signum, ps->ps_sigact[signum], p->p_sigmask, code);#endif sendsig(ps->ps_sigact[signum], signum, p->p_sigmask, code); p->p_sigmask |= ps->ps_catchmask[signum] | mask; } else { ps->ps_code = code; /* XXX for core dump/debugger */ psignal(p, signum); }}/* * Send the signal to the process. If the signal has an action, the action * is usually performed by the target process rather than the caller; we add * the signal to the set of pending signals for the process. * * Exceptions: * o When a stop signal is sent to a sleeping process that takes the * default action, the process is stopped without awakening it. * o SIGCONT restarts stopped processes (or puts them back to sleep) * regardless of the signal action (eg, blocked or ignored). * * Other ignored signals are discarded immediately. */voidpsignal(p, signum) register struct proc *p; register int signum;{ register int s, prop; register sig_t action; int mask; if ((u_int)signum >= NSIG || signum == 0) panic("psignal signal number"); mask = sigmask(signum); prop = sigprop[signum]; /* * If proc is traced, always give parent a chance. */ if (p->p_flag & P_TRACED) action = SIG_DFL; else { /* * If the signal is being ignored, * then we forget about it immediately. * (Note: we don't set SIGCONT in p_sigignore, * and if it is set to SIG_IGN, * action will be SIG_DFL here.) */ if (p->p_sigignore & mask) return; if (p->p_sigmask & mask) action = SIG_HOLD; else if (p->p_sigcatch & mask) action = SIG_CATCH; else action = SIG_DFL; } if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) && (p->p_flag & P_TRACED) == 0) p->p_nice = NZERO; if (prop & SA_CONT) p->p_siglist &= ~stopsigmask; if (prop & SA_STOP) { /* * If sending a tty stop signal to a member of an orphaned * process group, discard the signal here if the action * is default; don't stop the process below if sleeping, * and don't clear any pending SIGCONT. */ if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 && action == SIG_DFL) return; p->p_siglist &= ~contsigmask; } p->p_siglist |= mask; /* * Defer further processing for signals which are held, * except that stopped processes must be continued by SIGCONT. */ if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) return; s = splhigh(); switch (p->p_stat) { case SSLEEP: /* * If process is sleeping uninterruptibly * we can't interrupt the sleep... the signal will * be noticed when the process returns through * trap() or syscall(). */ if ((p->p_flag & P_SINTR) == 0) goto out; /* * Process is sleeping and traced... make it runnable * so it can discover the signal in issignal() and stop * for the parent. */ if (p->p_flag & P_TRACED) goto run; /* * If SIGCONT is default (or ignored) and process is * asleep, we are finished; the process should not * be awakened. */ if ((prop & SA_CONT) && action == SIG_DFL) { p->p_siglist &= ~mask; goto out; } /* * When a sleeping process receives a stop * signal, process immediately if possible. * All other (caught or default) signals * cause the process to run. */ if (prop & SA_STOP) { if (action != SIG_DFL) goto runfast; /* * If a child holding parent blocked, * stopping could cause deadlock. */ if (p->p_flag & P_PPWAIT) goto out; p->p_siglist &= ~mask; p->p_xstat = signum; if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) psignal(p->p_pptr, SIGCHLD); stop(p); goto out; } else goto runfast; /*NOTREACHED*/ case SSTOP: /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * Kill signal always sets processes running. */ if (signum == SIGKILL) goto runfast; if (prop & SA_CONT) { /* * If SIGCONT is default (or ignored), we continue the * process but don't leave the signal in p_siglist, as * it has no further action. If SIGCONT is held, we * continue the process and leave the signal in * p_siglist. If the process catches SIGCONT, let it * handle the signal itself. If it isn't waiting on * an event, then it goes back to run state. * Otherwise, process goes back to sleep state. */ if (action == SIG_DFL) p->p_siglist &= ~mask; if (action == SIG_CATCH) goto runfast; if (p->p_wchan == 0) goto run; p->p_stat = SSLEEP; goto out; } if (prop & SA_STOP) { /* * Already stopped, don't need to stop again. * (If we did the shell could get confused.) */ p->p_siglist &= ~mask; /* take it away */ goto out; } /* * If process is sleeping interruptibly, then simulate a * wakeup so that when it is continued, it will be made * runnable and can look at the signal. But don't make * the process runnable, leave it stopped. */ if (p->p_wchan && p->p_flag & P_SINTR) unsleep(p); goto out; default: /* * SRUN, SIDL, SZOMB do nothing with the signal, * other than kicking ourselves if we are running. * It will either never be noticed, or noticed very soon. */ if (p == curproc) signotify(p); goto out; } /*NOTREACHED*/runfast: /* * Raise priority to at least PUSER. */ if (p->p_priority > PUSER) p->p_priority = PUSER;run: setrunnable(p);out: splx(s);}/* * If the current process has received a signal (should be caught or cause * termination, should interrupt current syscall), return the signal number. * Stop signals with default action are processed immediately, then cleared; * they aren't returned. This is checked after each entry to the system for * a syscall or trap (though this can usually be done without calling issignal * by checking the pending signal masks in the CURSIG macro.) The normal call * sequence is * * while (signum = CURSIG(curproc)) * postsig(signum); */issignal(p) register struct proc *p;{ register int signum, mask, prop; for (;;) { mask = p->p_siglist & ~p->p_sigmask; if (p->p_flag & P_PPWAIT) mask &= ~stopsigmask; if (mask == 0) /* no signal to send */ return (0); signum = ffs((long)mask); mask = sigmask(signum); prop = sigprop[signum]; /* * We should see pending but ignored signals * only if P_TRACED was on when they were posted. */ if (mask & p->p_sigignore && (p->p_flag & P_TRACED) == 0) { p->p_siglist &= ~mask; continue; } if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { /* * If traced, always stop, and stay * stopped until released by the parent. */ p->p_xstat = signum; psignal(p->p_pptr, SIGCHLD); do { stop(p); mi_switch(); } while (!trace_req(p) && p->p_flag & P_TRACED); /* * If the traced bit got turned off, go back up * to the top to rescan signals. This ensures * that p_sig* and ps_sigact are consistent. */ if ((p->p_flag & P_TRACED) == 0) continue; /* * If parent wants us to take the signal, * then it will leave it in p->p_xstat; * otherwise we just look for signals again. */ p->p_siglist &= ~mask; /* clear the old signal */ signum = p->p_xstat; if (signum == 0) continue; /* * Put the new signal into p_siglist. If the * signal is being masked, look for other signals. */ mask = sigmask(signum); p->p_siglist |= mask; if (p->p_sigmask & mask) continue; } /* * Decide whether the signal should be returned. * Return the signal's number, or fall through * to clear it from the pending mask. */ switch ((int)p->p_sigacts->ps_sigact[signum]) { case SIG_DFL: /* * Don't take default actions on system processes. */ if (p->p_pid <= 1) {#ifdef DIAGNOSTIC /* * Are you sure you want to ignore SIGSEGV * in init? XXX */ printf("Process (pid %d) got signal %d\n", p->p_pid, signum);#endif break; /* == ignore */ } /* * If there is a pending stop signal to process * with default action, stop here, * then clear the signal. However, * if process is member of an orphaned * process group, ignore tty stop signals. */ if (prop & SA_STOP) { if (p->p_flag & P_TRACED || (p->p_pgrp->pg_jobc == 0 && prop & SA_TTYSTOP)) break; /* == ignore */ p->p_xstat = signum; stop(p); if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) psignal(p->p_pptr, SIGCHLD); mi_switch(); break; } else if (prop & SA_IGNORE) { /* * Except for SIGCONT, shouldn't get here. * Default action is to ignore; drop it. */ break; /* == ignore */ } else return (signum); /*NOTREACHED*/ case SIG_IGN: /* * Masking above should prevent us ever trying * to take action on an ignored signal other * than SIGCONT, unless process is traced. */ if ((prop & SA_CONT) == 0 && (p->p_flag & P_TRACED) == 0) printf("issignal\n"); break; /* == ignore */ default: /* * This signal has an action, let * postsig() process it. */ return (signum); } p->p_siglist &= ~mask; /* take the signal! */ } /* NOTREACHED */}/* * Put the argument process into the stopped state and notify the parent * via wakeup. Signals are handled elsewhere. The process must not be * on the run queue. */stop(p) register struct proc *p;{ p->p_stat = SSTOP; p->p_flag &= ~P_WAITED; wakeup((caddr_t)p->p_pptr);}/* * Take the action for the specified signal * from the current set of pending signals. */voidpostsig(signum) register int signum;{ register struct proc *p = curproc; register struct sigacts *ps = p->p_sigacts; register sig_t action; int code, mask, returnmask;#ifdef DIAGNOSTIC if (signum == 0) panic("postsig");#endif mask = sigmask(signum); p->p_siglist &= ~mask; action = ps->ps_sigact[signum];#ifdef KTRACE if (KTRPOINT(p, KTR_PSIG)) ktrpsig(p->p_tracep, signum, action, ps->ps_flags & SAS_OLDMASK ? ps->ps_oldmask : p->p_sigmask, 0);#endif if (action == SIG_DFL) { /* * Default action, where the default is to kill * the process. (Other cases were ignored above.) */ sigexit(p, signum); /* NOTREACHED */ } else { /* * If we get here, the signal must be caught. */#ifdef DIAGNOSTIC if (action == SIG_IGN || (p->p_sigmask & mask)) panic("postsig action");#endif /* * Set the new mask value and also defer further * occurences of this signal. * * Special case: user has done a sigpause. Here the * current mask is not of interest, but rather the * mask from before the sigpause is what we want * restored after the signal processing is completed. */ (void) splhigh(); if (ps->ps_flags & SAS_OLDMASK) { returnmask = ps->ps_oldmask; ps->ps_flags &= ~SAS_OLDMASK; } else returnmask = p->p_sigmask; p->p_sigmask |= ps->ps_catchmask[signum] | mask; (void) spl0(); p->p_stats->p_ru.ru_nsignals++; if (ps->ps_sig != signum) { code = 0; } else { code = ps->ps_code; ps->ps_code = 0; } sendsig(action, signum, returnmask, code); }}/* * Kill the current process for stated reason. */killproc(p, why) struct proc *p; char *why;{ log(LOG_ERR, "pid %d was killed: %s\n", p->p_pid, why); uprintf("sorry, pid %d was killed: %s\n", p->p_pid, why); psignal(p, SIGKILL);}/* * Force the current process to exit with the specified signal, dumping core * if appropriate. We bypass the normal tests for masked and caught signals, * allowing unrecoverable failures to terminate the process without changing * signal state. Mark the accounting record with the signal termination. * If dumping core, save the signal number for the debugger. Calls exit and * does not return. */sigexit(p, signum) register struct proc *p; int signum;{ p->p_acflag |= AXSIG; if (sigprop[signum] & SA_CORE) { p->p_sigacts->ps_sig = signum; if (coredump(p) == 0) signum |= WCOREFLAG; } exit1(p, W_EXITCODE(0, signum)); /* NOTREACHED */}/* * Dump core, into a file named "progname.core", unless the process was * setuid/setgid. */coredump(p) register struct proc *p;{ register struct vnode *vp; register struct pcred *pcred = p->p_cred; register struct ucred *cred = pcred->pc_ucred; register struct vmspace *vm = p->p_vmspace; struct nameidata nd; struct vattr vattr; int error, error1; char name[MAXCOMLEN+6]; /* progname.core */ if (pcred->p_svuid != pcred->p_ruid || pcred->p_svgid != pcred->p_rgid) return (EFAULT); if (ctob(UPAGES + vm->vm_dsize + vm->vm_ssize) >= p->p_rlimit[RLIMIT_CORE].rlim_cur) return (EFAULT); sprintf(name, "%s.core", p->p_comm); NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, name, p); if (error = vn_open(&nd, O_CREAT | FWRITE, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) return (error); vp = nd.ni_vp; /* Don't dump to non-regular files or files with links. */ if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred, p) || vattr.va_nlink != 1) { error = EFAULT; goto out; } VATTR_NULL(&vattr); vattr.va_size = 0; LEASE_CHECK(vp, p, cred, LEASE_WRITE); VOP_SETATTR(vp, &vattr, cred, p); p->p_acflag |= ACORE; bcopy(p, &p->p_addr->u_kproc.kp_proc, sizeof(struct proc)); fill_eproc(p, &p->p_addr->u_kproc.kp_eproc); error = cpu_coredump(p, vp, cred); if (error == 0) error = vn_rdwr(UIO_WRITE, vp, vm->vm_daddr, (int)ctob(vm->vm_dsize), (off_t)ctob(UPAGES), UIO_USERSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *) NULL, p); if (error == 0) error = vn_rdwr(UIO_WRITE, vp, (caddr_t) trunc_page(USRSTACK - ctob(vm->vm_ssize)), round_page(ctob(vm->vm_ssize)), (off_t)ctob(UPAGES) + ctob(vm->vm_dsize), UIO_USERSPACE, IO_NODELOCKED|IO_UNIT, cred, (int *) NULL, p);out: VOP_UNLOCK(vp); error1 = vn_close(vp, FWRITE, cred, p); if (error == 0) error = error1; return (error);}/* * Nonexistent system call-- signal process (may want to handle it). * Flag error in case process won't see signal immediately (blocked or ignored). */struct nosys_args { int dummy;};/* ARGSUSED */nosys(p, args, retval) struct proc *p; struct nosys_args *args; int *retval;{ psignal(p, SIGSYS); return (EINVAL);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -