⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 erf.c

📁 早期freebsd实现
💻 C
字号:
/*- * Copyright (c) 1992, 1993 *	The Regents of the University of California.  All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *	This product includes software developed by the University of *	California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors *    may be used to endorse or promote products derived from this software *    without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */#ifndef lintstatic char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";#endif /* not lint *//* Modified Nov 30, 1992 P. McILROY: *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp) * Replaced even+odd with direct calculation for x < .84375, * to avoid destructive cancellation. * * Performance of erfc(x): * In 300000 trials in the range [.83, .84375] the * maximum observed error was 3.6ulp. * * In [.84735,1.25] the maximum observed error was <2.5ulp in * 100000 runs in the range [1.2, 1.25]. * * In [1.25,26] (Not including subnormal results) * the error is < 1.7ulp. *//* double erf(double x) * double erfc(double x) *			     x *		      2      |\ *     erf(x)  =  ---------  | exp(-t*t)dt *		   sqrt(pi) \| *			     0 * *     erfc(x) =  1-erf(x) * * Method: *      1. Reduce x to |x| by erf(-x) = -erf(x) *	2. For x in [0, 0.84375] *	    erf(x)  = x + x*P(x^2) *          erfc(x) = 1 - erf(x)           if x<=0.25 *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375] *	   where *			2		 2	  4		  20   *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  ) * 	   is an approximation to (erf(x)-x)/x with precision * *						 -56.45 *			| P - (erf(x)-x)/x | <= 2 *	 * *	   Remark. The formula is derived by noting *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) *	   and that *          2/sqrt(pi) = 1.128379167095512573896158903121545171688 *	   is close to one. The interval is chosen because the fixed *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is *	   near 0.6174), and by some experiment, 0.84375 is chosen to * 	   guarantee the error is less than one ulp for erf. * *      3. For x in [0.84375,1.25], let s = x - 1, and *         c = 0.84506291151 rounded to single (24 bits) *         	erf(x)  = c  + P1(s)/Q1(s) *         	erfc(x) = (1-c)  - P1(s)/Q1(s) *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06 *	   Remark: here we use the taylor series expansion at x=1. *		erf(1+s) = erf(1) + s*Poly(s) *			 = 0.845.. + P1(s)/Q1(s) *	   That is, we use rational approximation to approximate *			erf(1+s) - (c = (single)0.84506291151) *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] *	   where  *		P1(s) = degree 6 poly in s *		Q1(s) = degree 6 poly in s * *	4. For x in [1.25, 2]; [2, 4] *         	erf(x)  = 1.0 - tiny *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z)) * *	Where z = 1/(x*x), R is degree 9, and S is degree 3; *	 *      5. For x in [4,28] *         	erf(x)  = 1.0 - tiny *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z)) * *	Where P is degree 14 polynomial in 1/(x*x). * *      Notes: *	   Here 4 and 5 make use of the asymptotic series *			  exp(-x*x) *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ); *			  x*sqrt(pi) * *		where for z = 1/(x*x) *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...)))) * *	   Thus we use rational approximation to approximate *              erfc*x*exp(x*x) ~ 1/sqrt(pi); * *		The error bound for the target function, G(z) for *		the interval *		[4, 28]: * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61) *		for [2, 4]: *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24) *		for [1.25, 2]: *		|R(z)/S(z) - G(z)|	 < 2**(-58.12) * *      6. For inf > x >= 28 *         	erf(x)  = 1 - tiny  (raise inexact) *         	erfc(x) = tiny*tiny (raise underflow) * *      7. Special cases: *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1, *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,  *	   	erfc/erf(NaN) is NaN */#if defined(vax) || defined(tahoe)#define _IEEE	0#define TRUNC(x) (double) (float) (x)#else#define _IEEE	1#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000#define infnan(x) 0.0#endif#ifdef _IEEE_LIBM/* * redefining "___function" to "function" in _IEEE_LIBM mode */#include "ieee_libm.h"#endifstatic doubletiny	    = 1e-300,half	    = 0.5,one	    = 1.0,two	    = 2.0,c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 *//* * Coefficients for approximation to erf in [0,0.84375] */p0t8 = 1.02703333676410051049867154944018394163280,p0 =   1.283791670955125638123339436800229927041e-0001,p1 =  -3.761263890318340796574473028946097022260e-0001,p2 =   1.128379167093567004871858633779992337238e-0001,p3 =  -2.686617064084433642889526516177508374437e-0002,p4 =   5.223977576966219409445780927846432273191e-0003,p5 =  -8.548323822001639515038738961618255438422e-0004,p6 =   1.205520092530505090384383082516403772317e-0004,p7 =  -1.492214100762529635365672665955239554276e-0005,p8 =   1.640186161764254363152286358441771740838e-0006,p9 =  -1.571599331700515057841960987689515895479e-0007,p10=   1.073087585213621540635426191486561494058e-0008;/* * Coefficients for approximation to erf in [0.84375,1.25]  */static doublepa0 =  -2.362118560752659485957248365514511540287e-0003,pa1 =   4.148561186837483359654781492060070469522e-0001,pa2 =  -3.722078760357013107593507594535478633044e-0001,pa3 =   3.183466199011617316853636418691420262160e-0001,pa4 =  -1.108946942823966771253985510891237782544e-0001,pa5 =   3.547830432561823343969797140537411825179e-0002,pa6 =  -2.166375594868790886906539848893221184820e-0003,qa1 =   1.064208804008442270765369280952419863524e-0001,qa2 =   5.403979177021710663441167681878575087235e-0001,qa3 =   7.182865441419627066207655332170665812023e-0002,qa4 =   1.261712198087616469108438860983447773726e-0001,qa5 =   1.363708391202905087876983523620537833157e-0002,qa6 =   1.198449984679910764099772682882189711364e-0002;/* * log(sqrt(pi)) for large x expansions. * The tail (lsqrtPI_lo) is included in the rational * approximations.*/static double   lsqrtPI_hi = .5723649429247000819387380943226;/* * lsqrtPI_lo = .000000000000000005132975581353913; * * Coefficients for approximation to erfc in [2, 4]*/static doublerb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */rb1  =	 2.15592846101742183841910806188e-008,rb2  =	 6.24998557732436510470108714799e-001,rb3  =	 8.24849222231141787631258921465e+000,rb4  =	 2.63974967372233173534823436057e+001,rb5  =	 9.86383092541570505318304640241e+000,rb6  =	-7.28024154841991322228977878694e+000,rb7  =	 5.96303287280680116566600190708e+000,rb8  =	-4.40070358507372993983608466806e+000,rb9  =	 2.39923700182518073731330332521e+000,rb10 =	-6.89257464785841156285073338950e-001,sb1  =	 1.56641558965626774835300238919e+001,sb2  =	 7.20522741000949622502957936376e+001,sb3  =	 9.60121069770492994166488642804e+001;/* * Coefficients for approximation to erfc in [1.25, 2]*/static doublerc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */rc1  =	 1.28735722546372485255126993930e-005,rc2  =	 6.24664954087883916855616917019e-001,rc3  =	 4.69798884785807402408863708843e+000,rc4  =	 7.61618295853929705430118701770e+000,rc5  =	 9.15640208659364240872946538730e-001,rc6  =	-3.59753040425048631334448145935e-001,rc7  =	 1.42862267989304403403849619281e-001,rc8  =	-4.74392758811439801958087514322e-002,rc9  =	 1.09964787987580810135757047874e-002,rc10 =	-1.28856240494889325194638463046e-003,sc1  =	 9.97395106984001955652274773456e+000,sc2  =	 2.80952153365721279953959310660e+001,sc3  =	 2.19826478142545234106819407316e+001;/* * Coefficients for approximation to  erfc in [4,28] */static doublerd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */rd1  =	-4.99999999999640086151350330820e-001,rd2  =	 6.24999999772906433825880867516e-001,rd3  =	-1.54166659428052432723177389562e+000,rd4  =	 5.51561147405411844601985649206e+000,rd5  =	-2.55046307982949826964613748714e+001,rd6  =	 1.43631424382843846387913799845e+002,rd7  =	-9.45789244999420134263345971704e+002,rd8  =	 6.94834146607051206956384703517e+003,rd9  =	-5.27176414235983393155038356781e+004,rd10 =	 3.68530281128672766499221324921e+005,rd11 =	-2.06466642800404317677021026611e+006,rd12 =	 7.78293889471135381609201431274e+006,rd13 =	-1.42821001129434127360582351685e+007;double erf(x)	double x;{	double R,S,P,Q,ax,s,y,z,r,fabs(),exp();	if(!finite(x)) {		/* erf(nan)=nan */	    if (isnan(x))		return(x);	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */	}	if ((ax = x) < 0)		ax = - ax;	if (ax < .84375) {	    if (ax < 3.7e-09) {		if (ax < 1.0e-308)		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */		return x + p0*x;	    }	    y = x*x;	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));	    return x + x*(p0+r);	}	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */	    s = fabs(x)-one;	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));	    if (x>=0)		return (c + P/Q);	    else		return (-c - P/Q);	}	if (ax >= 6.0) {		/* inf>|x|>=6 */	    if (x >= 0.0)		return (one-tiny);	    else		return (tiny-one);	}    /* 1.25 <= |x| < 6 */	z = -ax*ax;	s = -one/z;	if (ax < 2.0) {		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));		S = one+s*(sc1+s*(sc2+s*sc3));	} else {		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));		S = one+s*(sb1+s*(sb2+s*sb3));	}	y = (R/S -.5*s) - lsqrtPI_hi;	z += y;	z = exp(z)/ax;	if (x >= 0)		return (one-z);	else		return (z-one);}double erfc(x) 	double x;{	double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();	if (!finite(x)) {		if (isnan(x))		/* erfc(NaN) = NaN */			return(x);		else if (x > 0)		/* erfc(+-inf)=0,2 */			return 0.0;		else			return 2.0;	}	if ((ax = x) < 0)		ax = -ax;	if (ax < .84375) {			/* |x|<0.84375 */	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */		return one-x;	    y = x*x;	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));	    if (ax < .0625) {  	/* |x|<2**-4 */		return (one-(x+x*(p0+r)));	    } else {		r = x*(p0+r);		r += (x-half);	        return (half - r);	    }	}	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */	    s = ax-one;	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));	    if (x>=0) {	        z  = one-c; return z - P/Q; 	    } else {		z = c+P/Q; return one+z;	    }	}	if (ax >= 28)	/* Out of range */ 		if (x>0)			return (tiny*tiny);		else			return (two-tiny);	z = ax;	TRUNC(z);	y = z - ax; y *= (ax+z);	z *= -z;			/* Here z + y = -x^2 */		s = one/(-z-y);		/* 1/(x*x) */	if (ax >= 4) {			/* 6 <= ax */		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10			+s*(rd11+s*(rd12+s*rd13))))))))))));		y += rd0;	} else if (ax >= 2) {		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));		S = one+s*(sb1+s*(sb2+s*sb3));		y += R/S;		R = -.5*s;	} else {		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));		S = one+s*(sc1+s*(sc2+s*sc3));		y += R/S;		R = -.5*s;	}	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/	s = ((R + y) - lsqrtPI_hi) + z;	y = (((z-s) - lsqrtPI_hi) + R) + y;	r = __exp__D(s, y)/x;	if (x>0)		return r;	else		return two-r;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -