⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 argred.s

📁 早期freebsd实现
💻 S
📖 第 1 页 / 共 2 页
字号:
# Copyright (c) 1985, 1993#	The Regents of the University of California.  All rights reserved.## Redistribution and use in source and binary forms, with or without# modification, are permitted provided that the following conditions# are met:# 1. Redistributions of source code must retain the above copyright#    notice, this list of conditions and the following disclaimer.# 2. Redistributions in binary form must reproduce the above copyright#    notice, this list of conditions and the following disclaimer in the#    documentation and/or other materials provided with the distribution.# 3. All advertising materials mentioning features or use of this software#    must display the following acknowledgement:#	This product includes software developed by the University of#	California, Berkeley and its contributors.# 4. Neither the name of the University nor the names of its contributors#    may be used to endorse or promote products derived from this software#    without specific prior written permission.## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE# ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF# SUCH DAMAGE.##	@(#)argred.s	8.1 (Berkeley) 6/4/93#	.data	.align	2_sccsid:.asciz	"@(#)argred.s	1.1 (Berkeley) 8/21/85; 8.1 (ucb.elefunt) 6/4/93"#  libm$argred implements Bob Corbett's argument reduction and#  libm$sincos implements Peter Tang's double precision sin/cos.#  #  Note: The two entry points libm$argred and libm$sincos are meant#        to be used only by _sin, _cos and _tan.## method: true range reduction to [-pi/4,pi/4], P. Tang  &  B. Corbett# S. McDonald, April 4,  1985#	.globl	libm$argred	.globl	libm$sincos	.text	.align	1libm$argred:##  Compare the argument with the largest possible that can#  be reduced by table lookup.  r3 := |x|  will be used in  table_lookup .#	movd	r0,r3	bgeq	abs1	mnegd	r3,r3abs1:	cmpd	r3,$0d+4.55530934770520019583e+01	blss	small_arg	jsb	trigred	rsbsmall_arg:	jsb	table_lookup	rsb##  At this point,#	   r0  contains the quadrant number, 0, 1, 2, or 3;#	r2/r1  contains the reduced argument as a D-format number;#  	   r3  contains a F-format extension to the reduced argument;#          r4  contains a  0 or 1  corresponding to a  sin or cos  entry.#libm$sincos:##  Compensate for a cosine entry by adding one to the quadrant number.#	addl2	r4,r0##  Polyd clobbers  r5-r0 ;  save  X  in  r7/r6 .#  This can be avoided by rewriting  trigred .#	movd	r1,r6##  Likewise, save  alpha  in  r8 .#  This can be avoided by rewriting  trigred .#	movf	r3,r8##  Odd or even quadrant?  cosine if odd, sine otherwise.#  Save  floor(quadrant/2) in  r9  ; it determines the final sign.#	rotl	$-1,r0,r9	blss	cosinesine:	muld2	r1,r1		# Xsq = X * X	cmpw	$0x2480,r1	# [zl] Xsq > 2^-56?	blss	1f		# [zl] yes, go ahead and do polyd	clrq	r1		# [zl] work around 11/780 FPA polyd bug1:	polyd	r1,$7,sin_coef	# Q = P(Xsq) , of deg 7	mulf3	$0f3.0,r8,r4	# beta = 3 * alpha	mulf2	r0,r4		# beta = Q * beta	addf2	r8,r4		# beta = alpha + beta	muld2	r6,r0		# S(X) = X * Q#	cvtfd	r4,r4		... r5 = 0 after a polyd.	addd2	r4,r0		# S(X) = beta + S(X)	addd2	r6,r0		# S(X) = X + S(X)	brb	donecosine:	muld2	r6,r6		# Xsq = X * X	beql	zero_arg	mulf2	r1,r8		# beta = X * alpha	polyd	r6,$7,cos_coef	# Q = P'(Xsq) , of deg 7	subd3	r0,r8,r0	# beta = beta - Q	subw2	$0x80,r6	# Xsq = Xsq / 2	addd2	r0,r6		# Xsq = Xsq + betazero_arg:	subd3	r6,$0d1.0,r0	# C(X) = 1 - Xsqdone:	blbc	r9,even	mnegd	r0,r0even:	rsb.data.align	2sin_coef:	.double	0d-7.53080332264191085773e-13	# s7 = 2^-29 -1.a7f2504ffc49f8..	.double	0d+1.60573519267703489121e-10	# s6 = 2^-21  1.611adaede473c8..	.double	0d-2.50520965150706067211e-08	# s5 = 2^-1a -1.ae644921ed8382..	.double	0d+2.75573191800593885716e-06	# s4 = 2^-13  1.71de3a4b884278..	.double	0d-1.98412698411850507950e-04	# s3 = 2^-0d -1.a01a01a0125e7d..	.double	0d+8.33333333333325688985e-03	# s2 = 2^-07  1.11111111110e50	.double	0d-1.66666666666666664354e-01	# s1 = 2^-03 -1.55555555555554	.double	0d+0.00000000000000000000e+00	# s0 = 0cos_coef:	.double	0d-1.13006966202629430300e-11	# s7 = 2^-25 -1.8D9BA04D1374BE..	.double	0d+2.08746646574796004700e-09	# s6 = 2^-1D  1.1EE632650350BA..	.double	0d-2.75573073031284417300e-07	# s5 = 2^-16 -1.27E4F31411719E..	.double	0d+2.48015872682668025200e-05	# s4 = 2^-10  1.A01A0196B902E8..	.double	0d-1.38888888888464709200e-03	# s3 = 2^-0A -1.6C16C16C11FACE..	.double	0d+4.16666666666664761400e-02	# s2 = 2^-05  1.5555555555539E	.double	0d+0.00000000000000000000e+00	# s1 = 0	.double	0d+0.00000000000000000000e+00	# s0 = 0##  Multiples of  pi/2  expressed as the sum of three doubles,##  trailing:	n * pi/2 ,  n = 0, 1, 2, ..., 29#			trailing[n] ,##  middle:	n * pi/2 ,  n = 0, 1, 2, ..., 29#			middle[n]   ,##  leading:	n * pi/2 ,  n = 0, 1, 2, ..., 29#			leading[n]  ,##	where#		leading[n]  := (n * pi/2)  rounded,#		middle[n]   := (n * pi/2  -  leading[n])  rounded,#		trailing[n] := (( n * pi/2 - leading[n]) - middle[n])  rounded .trailing:	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  trailing	.double	0d+4.33590506506189049611e-35	#  1 * pi/2  trailing	.double	0d+8.67181013012378099223e-35	#  2 * pi/2  trailing	.double	0d+1.30077151951856714215e-34	#  3 * pi/2  trailing	.double	0d+1.73436202602475619845e-34	#  4 * pi/2  trailing	.double	0d-1.68390735624352669192e-34	#  5 * pi/2  trailing	.double	0d+2.60154303903713428430e-34	#  6 * pi/2  trailing	.double	0d-8.16726343231148352150e-35	#  7 * pi/2  trailing	.double	0d+3.46872405204951239689e-34	#  8 * pi/2  trailing	.double	0d+3.90231455855570147991e-34	#  9 * pi/2  trailing	.double	0d-3.36781471248705338384e-34	# 10 * pi/2  trailing	.double	0d-1.06379439835298071785e-33	# 11 * pi/2  trailing	.double	0d+5.20308607807426856861e-34	# 12 * pi/2  trailing	.double	0d+5.63667658458045770509e-34	# 13 * pi/2  trailing	.double	0d-1.63345268646229670430e-34	# 14 * pi/2  trailing	.double	0d-1.19986217995610764801e-34	# 15 * pi/2  trailing	.double	0d+6.93744810409902479378e-34	# 16 * pi/2  trailing	.double	0d-8.03640094449267300110e-34	# 17 * pi/2  trailing	.double	0d+7.80462911711140295982e-34	# 18 * pi/2  trailing	.double	0d-7.16921993148029483506e-34	# 19 * pi/2  trailing	.double	0d-6.73562942497410676769e-34	# 20 * pi/2  trailing	.double	0d-6.30203891846791677593e-34	# 21 * pi/2  trailing	.double	0d-2.12758879670596143570e-33	# 22 * pi/2  trailing	.double	0d+2.53800212047402350390e-33	# 23 * pi/2  trailing	.double	0d+1.04061721561485371372e-33	# 24 * pi/2  trailing	.double	0d+6.11729905311472319056e-32	# 25 * pi/2  trailing	.double	0d+1.12733531691609154102e-33	# 26 * pi/2  trailing	.double	0d-3.70049587943078297272e-34	# 27 * pi/2  trailing	.double	0d-3.26690537292459340860e-34	# 28 * pi/2  trailing	.double	0d-1.14812616507957271361e-34	# 29 * pi/2  trailingmiddle:	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  middle	.double	0d+5.72118872610983179676e-18	#  1 * pi/2  middle	.double	0d+1.14423774522196635935e-17	#  2 * pi/2  middle	.double	0d-3.83475850529283316309e-17	#  3 * pi/2  middle	.double	0d+2.28847549044393271871e-17	#  4 * pi/2  middle	.double	0d-2.69052076007086676522e-17	#  5 * pi/2  middle	.double	0d-7.66951701058566632618e-17	#  6 * pi/2  middle	.double	0d-1.54628301484890040587e-17	#  7 * pi/2  middle	.double	0d+4.57695098088786543741e-17	#  8 * pi/2  middle	.double	0d+1.07001849766246313192e-16	#  9 * pi/2  middle	.double	0d-5.38104152014173353044e-17	# 10 * pi/2  middle	.double	0d-2.14622680169080983801e-16	# 11 * pi/2  middle	.double	0d-1.53390340211713326524e-16	# 12 * pi/2  middle	.double	0d-9.21580002543456677056e-17	# 13 * pi/2  middle	.double	0d-3.09256602969780081173e-17	# 14 * pi/2  middle	.double	0d+3.03066796603896507006e-17	# 15 * pi/2  middle	.double	0d+9.15390196177573087482e-17	# 16 * pi/2  middle	.double	0d+1.52771359575124969107e-16	# 17 * pi/2  middle	.double	0d+2.14003699532492626384e-16	# 18 * pi/2  middle	.double	0d-1.68853170360202329427e-16	# 19 * pi/2  middle	.double	0d-1.07620830402834670609e-16	# 20 * pi/2  middle	.double	0d+3.97700719404595604379e-16	# 21 * pi/2  middle	.double	0d-4.29245360338161967602e-16	# 22 * pi/2  middle	.double	0d-3.68013020380794313406e-16	# 23 * pi/2  middle	.double	0d-3.06780680423426653047e-16	# 24 * pi/2  middle	.double	0d-2.45548340466059054318e-16	# 25 * pi/2  middle	.double	0d-1.84316000508691335411e-16	# 26 * pi/2  middle	.double	0d-1.23083660551323675053e-16	# 27 * pi/2  middle	.double	0d-6.18513205939560162346e-17	# 28 * pi/2  middle	.double	0d-6.18980636588357585202e-19	# 29 * pi/2  middleleading:	.double	0d+0.00000000000000000000e+00	#  0 * pi/2  leading	.double	0d+1.57079632679489661351e+00	#  1 * pi/2  leading	.double	0d+3.14159265358979322702e+00	#  2 * pi/2  leading	.double	0d+4.71238898038468989604e+00	#  3 * pi/2  leading	.double	0d+6.28318530717958645404e+00	#  4 * pi/2  leading	.double	0d+7.85398163397448312306e+00	#  5 * pi/2  leading	.double	0d+9.42477796076937979208e+00	#  6 * pi/2  leading	.double	0d+1.09955742875642763501e+01	#  7 * pi/2  leading	.double	0d+1.25663706143591729081e+01	#  8 * pi/2  leading	.double	0d+1.41371669411540694661e+01	#  9 * pi/2  leading	.double	0d+1.57079632679489662461e+01	# 10 * pi/2  leading	.double	0d+1.72787595947438630262e+01	# 11 * pi/2  leading	.double	0d+1.88495559215387595842e+01	# 12 * pi/2  leading	.double	0d+2.04203522483336561422e+01	# 13 * pi/2  leading	.double	0d+2.19911485751285527002e+01	# 14 * pi/2  leading	.double	0d+2.35619449019234492582e+01	# 15 * pi/2  leading	.double	0d+2.51327412287183458162e+01	# 16 * pi/2  leading	.double	0d+2.67035375555132423742e+01	# 17 * pi/2  leading	.double	0d+2.82743338823081389322e+01	# 18 * pi/2  leading	.double	0d+2.98451302091030359342e+01	# 19 * pi/2  leading	.double	0d+3.14159265358979324922e+01	# 20 * pi/2  leading	.double	0d+3.29867228626928286062e+01	# 21 * pi/2  leading	.double	0d+3.45575191894877260523e+01	# 22 * pi/2  leading	.double	0d+3.61283155162826226103e+01	# 23 * pi/2  leading	.double	0d+3.76991118430775191683e+01	# 24 * pi/2  leading	.double	0d+3.92699081698724157263e+01	# 25 * pi/2  leading	.double	0d+4.08407044966673122843e+01	# 26 * pi/2  leading	.double	0d+4.24115008234622088423e+01	# 27 * pi/2  leading	.double	0d+4.39822971502571054003e+01	# 28 * pi/2  leading	.double	0d+4.55530934770520019583e+01	# 29 * pi/2  leadingtwoOverPi:	.double	0d+6.36619772367581343076e-01	.text	.align	1table_lookup:	muld3	r3,twoOverPi,r0	cvtrdl	r0,r0			# n = nearest int to ((2/pi)*|x|) rnded	mull3	$8,r0,r5	subd2	leading(r5),r3		# p = (|x| - leading n*pi/2) exactly	subd3	middle(r5),r3,r1	# q = (p - middle  n*pi/2) rounded	subd2	r1,r3			# r = (p - q)	subd2	middle(r5),r3		# r =  r - middle  n*pi/2	subd2	trailing(r5),r3		# r =  r - trailing n*pi/2  rounded##  If the original argument was negative,#  negate the reduce argument and#  adjust the octant/quadrant number.#	tstw	4(ap)	bgeq	abs2	mnegf	r1,r1	mnegf	r3,r3#	subb3	r0,$8,r0	...used for  pi/4  reduction -S.McD	subb3	r0,$4,r0abs2:##  Clear all unneeded octant/quadrant bits.##	bicb2	$0xf8,r0	...used for  pi/4  reduction -S.McD	bicb2	$0xfc,r0	rsb##						p.0	.text	.align	2## Only 256 (actually 225) bits of 2/pi are needed for VAX double# precision; this was determined by enumerating all the nearest# machine integer multiples of pi/2 using continued fractions.# (8a8d3673775b7ff7 required the most bits.)		-S.McD#	.long	0	.long	0	.long	0xaef1586d	.long	0x9458eaf7	.long	0x10e4107f	.long	0xd8a5664f	.long	0x4d377036	.long	0x09d5f47d	.long	0x91054a7f	.long	0xbe60db93bits2opi:	.long	0x00000028	.long	0##  Note: wherever you see the word `octant', read `quadrant'.#  Currently this code is set up for  pi/2  argument reduction.#  By uncommenting/commenting the appropriate lines, it will#  also serve as a  pi/4  argument reduction code.#  #						p.1#  Trigred  preforms argument reduction#  for the trigonometric functions.  It#  takes one input argument, a D-format#  number in  r1/r0 .  The magnitude of#  the input argument must be greater#  than or equal to  1/2 .  Trigred produces#  three results:  the number of the octant#  occupied by the argument, the reduced #  argument, and an extension of the#  reduced argument.  The octant number is #  returned in  r0 .  The reduced argument #  is returned as a D-format number in #  r2/r1 .  An 8 bit extension of the #  reduced argument is returned as an #  F-format number in r3.#						p.2trigred:##  Save the sign of the input argument.#	movw	r0,-(sp)##  Extract the exponent field.#	extzv	$7,$7,r0,r2##  Convert the fraction part of the input#  argument into a quadword integer.#	bicw2	$0xff80,r0	bisb2	$0x80,r0	# -S.McD	rotl	$16,r0,r0	rotl	$16,r1,r1##  If  r1  is negative, add  1  to  r0 .  This#  adjustment is made so that the two's#  complement multiplications done later#  will produce unsigned results.#	bgeq	posmid	incl	r0posmid:#						p.3##  Set  r3  to the address of the first quadword#  used to obtain the needed portion of  2/pi .#  The address is longword aligned to ensure#  efficient access.#	ashl	$-3,r2,r3	bicb2	$3,r3	subl3	r3,$bits2opi,r3##  Set  r2  to the size of the shift needed to #  obtain the correct portion of  2/pi .#	bicb2	$0xe0,r2#						p.4##  Move the needed  128  bits of  2/pi  into#  r11 - r8 .  Adjust the numbers to allow#  for unsigned multiplication.#	ashq	r2,(r3),r10	subl2	$4,r3	ashq	r2,(r3),r9	bgeq	signoff1	incl	r11

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -