⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 strtod.c

📁 早期freebsd实现
💻 C
📖 第 1 页 / 共 4 页
字号:
 *	   the correctly rounded result.  For k requested digits and *	   "uniformly" distributed input, the probability is *	   something like 10^(k-15) that we must resort to the long *	   calculation. */char *__dtoa#ifdef KR_headers	(d, mode, ndigits, decpt, sign, rve)	double d; int mode, ndigits, *decpt, *sign; char **rve;#else	(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)#endif{ /*	Arguments ndigits, decpt, sign are similar to those	of ecvt and fcvt; trailing zeros are suppressed from	the returned string.  If not null, *rve is set to point	to the end of the return value.  If d is +-Infinity or NaN,	then *decpt is set to 9999.	mode:		0 ==> shortest string that yields d when read in			and rounded to nearest.		1 ==> like 0, but with Steele & White stopping rule;			e.g. with IEEE P754 arithmetic , mode 0 gives			1e23 whereas mode 1 gives 9.999999999999999e22.		2 ==> max(1,ndigits) significant digits.  This gives a			return value similar to that of ecvt, except			that trailing zeros are suppressed.		3 ==> through ndigits past the decimal point.  This			gives a return value similar to that from fcvt,			except that trailing zeros are suppressed, and			ndigits can be negative.		4-9 should give the same return values as 2-3, i.e.,			4 <= mode <= 9 ==> same return as mode			2 + (mode & 1).  These modes are mainly for			debugging; often they run slower but sometimes			faster than modes 2-3.		4,5,8,9 ==> left-to-right digit generation.		6-9 ==> don't try fast floating-point estimate			(if applicable).		Values of mode other than 0-9 are treated as mode 0.		Sufficient space is allocated to the return value		to hold the suppressed trailing zeros.	*/	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,		spec_case, try_quick;	long L;#ifndef Sudden_Underflow	int denorm;	unsigned long x;#endif	Bigint *b, *b1, *delta, *mlo, *mhi, *S;	double d2, ds, eps;	char *s, *s0;	static Bigint *result;	static int result_k;	if (result) {		result->k = result_k;		result->maxwds = 1 << result_k;		Bfree(result);		result = 0;	}	if (word0(d) & Sign_bit) {		/* set sign for everything, including 0's and NaNs */		*sign = 1;		word0(d) &= ~Sign_bit;	/* clear sign bit */	}	else		*sign = 0;#if defined(IEEE_Arith) + defined(VAX)#ifdef IEEE_Arith	if ((word0(d) & Exp_mask) == Exp_mask)#else	if (word0(d)  == 0x8000)#endif	{		/* Infinity or NaN */		*decpt = 9999;		s =#ifdef IEEE_Arith			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :#endif				"NaN";		if (rve)			*rve =#ifdef IEEE_Arith				s[3] ? s + 8 :#endif						s + 3;		return s;	}#endif#ifdef IBM	d += 0; /* normalize */#endif	if (!d) {		*decpt = 1;		s = "0";		if (rve)			*rve = s + 1;		return s;	}	b = d2b(d, &be, &bbits);#ifdef Sudden_Underflow	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));#else	if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) {#endif		d2 = d;		word0(d2) &= Frac_mask1;		word0(d2) |= Exp_11;#ifdef IBM		if (j = 11 - hi0bits(word0(d2) & Frac_mask))			d2 /= 1 << j;#endif		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5		 * log10(x)	 =  log(x) / log(10)		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)		 *		 * This suggests computing an approximation k to log10(d) by		 *		 * k = (i - Bias)*0.301029995663981		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );		 *		 * We want k to be too large rather than too small.		 * The error in the first-order Taylor series approximation		 * is in our favor, so we just round up the constant enough		 * to compensate for any error in the multiplication of		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,		 * adding 1e-13 to the constant term more than suffices.		 * Hence we adjust the constant term to 0.1760912590558.		 * (We could get a more accurate k by invoking log10,		 *  but this is probably not worthwhile.)		 */		i -= Bias;#ifdef IBM		i <<= 2;		i += j;#endif#ifndef Sudden_Underflow		denorm = 0;	} else {		/* d is denormalized */		i = bbits + be + (Bias + (P-1) - 1);		x = i > 32  ? word0(d) << 64 - i | word1(d) >> i - 32			    : word1(d) << 32 - i;		d2 = x;		word0(d2) -= 31*Exp_msk1; /* adjust exponent */		i -= (Bias + (P-1) - 1) + 1;		denorm = 1;	}#endif	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;	k = (int)ds;	if (ds < 0. && ds != k)		k--;	/* want k = floor(ds) */	k_check = 1;	if (k >= 0 && k <= Ten_pmax) {		if (d < tens[k])			k--;		k_check = 0;	}	j = bbits - i - 1;	if (j >= 0) {		b2 = 0;		s2 = j;	} else {		b2 = -j;		s2 = 0;	}	if (k >= 0) {		b5 = 0;		s5 = k;		s2 += k;	} else {		b2 -= k;		b5 = -k;		s5 = 0;	}	if (mode < 0 || mode > 9)		mode = 0;	try_quick = 1;	if (mode > 5) {		mode -= 4;		try_quick = 0;	}	leftright = 1;	switch(mode) {		case 0:		case 1:			ilim = ilim1 = -1;			i = 18;			ndigits = 0;			break;		case 2:			leftright = 0;			/* no break */		case 4:			if (ndigits <= 0)				ndigits = 1;			ilim = ilim1 = i = ndigits;			break;		case 3:			leftright = 0;			/* no break */		case 5:			i = ndigits + k + 1;			ilim = i;			ilim1 = i - 1;			if (i <= 0)				i = 1;	}	j = sizeof(unsigned long);	for (result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j < i;		j <<= 1) result_k++;	result = Balloc(result_k);	s = s0 = (char *)result;	if (ilim >= 0 && ilim <= Quick_max && try_quick) {		/* Try to get by with floating-point arithmetic. */		i = 0;		d2 = d;		k0 = k;		ilim0 = ilim;		ieps = 2; /* conservative */		if (k > 0) {			ds = tens[k&0xf];			j = k >> 4;			if (j & Bletch) {				/* prevent overflows */				j &= Bletch - 1;				d /= bigtens[n_bigtens-1];				ieps++;			}			for (; j; j >>= 1, i++)				if (j & 1) {					ieps++;					ds *= bigtens[i];				}			d /= ds;		} else if (j1 = -k) {			d *= tens[j1 & 0xf];			for (j = j1 >> 4; j; j >>= 1, i++)				if (j & 1) {					ieps++;					d *= bigtens[i];				}		}		if (k_check && d < 1. && ilim > 0) {			if (ilim1 <= 0)				goto fast_failed;			ilim = ilim1;			k--;			d *= 10.;			ieps++;		}		eps = ieps*d + 7.;		word0(eps) -= (P-1)*Exp_msk1;		if (ilim == 0) {			S = mhi = 0;			d -= 5.;			if (d > eps)				goto one_digit;			if (d < -eps)				goto no_digits;			goto fast_failed;		}#ifndef No_leftright		if (leftright) {			/* Use Steele & White method of only			 * generating digits needed.			 */			eps = 0.5/tens[ilim-1] - eps;			for (i = 0;;) {				L = d;				d -= L;				*s++ = '0' + (int)L;				if (d < eps)					goto ret1;				if (1. - d < eps)					goto bump_up;				if (++i >= ilim)					break;				eps *= 10.;				d *= 10.;			}		} else {#endif			/* Generate ilim digits, then fix them up. */			eps *= tens[ilim-1];			for (i = 1;; i++, d *= 10.) {				L = d;				d -= L;				*s++ = '0' + (int)L;				if (i == ilim) {					if (d > 0.5 + eps)						goto bump_up;					else if (d < 0.5 - eps) {						while (*--s == '0');						s++;						goto ret1;					}					break;				}			}#ifndef No_leftright		}#endif fast_failed:		s = s0;		d = d2;		k = k0;		ilim = ilim0;	}	/* Do we have a "small" integer? */	if (be >= 0 && k <= Int_max) {		/* Yes. */		ds = tens[k];		if (ndigits < 0 && ilim <= 0) {			S = mhi = 0;			if (ilim < 0 || d <= 5*ds)				goto no_digits;			goto one_digit;		}		for (i = 1;; i++) {			L = d / ds;			d -= L*ds;#ifdef Check_FLT_ROUNDS			/* If FLT_ROUNDS == 2, L will usually be high by 1 */			if (d < 0) {				L--;				d += ds;			}#endif			*s++ = '0' + (int)L;			if (i == ilim) {				d += d;				if (d > ds || d == ds && L & 1) { bump_up:					while (*--s == '9')						if (s == s0) {							k++;							*s = '0';							break;						}					++*s++;				}				break;			}			if (!(d *= 10.))				break;		}		goto ret1;	}	m2 = b2;	m5 = b5;	mhi = mlo = 0;	if (leftright) {		if (mode < 2) {			i =#ifndef Sudden_Underflow				denorm ? be + (Bias + (P-1) - 1 + 1) :#endif#ifdef IBM				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);#else				1 + P - bbits;#endif		} else {			j = ilim - 1;			if (m5 >= j)				m5 -= j;			else {				s5 += j -= m5;				b5 += j;				m5 = 0;			}			if ((i = ilim) < 0) {				m2 -= i;				i = 0;			}		}		b2 += i;		s2 += i;		mhi = i2b(1);	}	if (m2 > 0 && s2 > 0) {		i = m2 < s2 ? m2 : s2;		b2 -= i;		m2 -= i;		s2 -= i;	}	if (b5 > 0) {		if (leftright) {			if (m5 > 0) {				mhi = pow5mult(mhi, m5);				b1 = mult(mhi, b);				Bfree(b);				b = b1;				}			if (j = b5 - m5)				b = pow5mult(b, j);		} else			b = pow5mult(b, b5);	}	S = i2b(1);	if (s5 > 0)		S = pow5mult(S, s5);	/* Check for special case that d is a normalized power of 2. */	if (mode < 2) {		if (!word1(d) && !(word0(d) & Bndry_mask)#ifndef Sudden_Underflow		 && word0(d) & Exp_mask#endif				) {			/* The special case */			b2 += Log2P;			s2 += Log2P;			spec_case = 1;		} else			spec_case = 0;	}	/* Arrange for convenient computation of quotients:	 * shift left if necessary so divisor has 4 leading 0 bits.	 *	 * Perhaps we should just compute leading 28 bits of S once	 * and for all and pass them and a shift to quorem, so it	 * can do shifts and ors to compute the numerator for q.	 */#ifdef Pack_32	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)		i = 32 - i;#else	if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf)		i = 16 - i;#endif	if (i > 4) {		i -= 4;		b2 += i;		m2 += i;		s2 += i;	} else if (i < 4) {		i += 28;		b2 += i;		m2 += i;		s2 += i;	}	if (b2 > 0)		b = lshift(b, b2);	if (s2 > 0)		S = lshift(S, s2);	if (k_check) {		if (cmp(b,S) < 0) {			k--;			b = multadd(b, 10, 0);	/* we botched the k estimate */			if (leftright)				mhi = multadd(mhi, 10, 0);			ilim = ilim1;		}	}	if (ilim <= 0 && mode > 2) {		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {			/* no digits, fcvt style */ no_digits:			k = -1 - ndigits;			goto ret;		} one_digit:		*s++ = '1';		k++;		goto ret;	}	if (leftright) {		if (m2 > 0)			mhi = lshift(mhi, m2);		/* Compute mlo -- check for special case		 * that d is a normalized power of 2.		 */		mlo = mhi;		if (spec_case) {			mhi = Balloc(mhi->k);			Bcopy(mhi, mlo);			mhi = lshift(mhi, Log2P);		}		for (i = 1;;i++) {			dig = quorem(b,S) + '0';			/* Do we yet have the shortest decimal string			 * that will round to d?			 */			j = cmp(b, mlo);			delta = diff(S, mhi);			j1 = delta->sign ? 1 : cmp(b, delta);			Bfree(delta);#ifndef ROUND_BIASED			if (j1 == 0 && !mode && !(word1(d) & 1)) {				if (dig == '9')					goto round_9_up;				if (j > 0)					dig++;				*s++ = dig;				goto ret;			}#endif			if (j < 0 || j == 0 && !mode#ifndef ROUND_BIASED							&& !(word1(d) & 1)#endif					) {				if (j1 > 0) {					b = lshift(b, 1);					j1 = cmp(b, S);					if ((j1 > 0 || j1 == 0 && dig & 1)					&& dig++ == '9')						goto round_9_up;				}				*s++ = dig;				goto ret;			}			if (j1 > 0) {				if (dig == '9') { /* possible if i == 1 */ round_9_up:					*s++ = '9';					goto roundoff;				}				*s++ = dig + 1;				goto ret;			}			*s++ = dig;			if (i == ilim)				break;			b = multadd(b, 10, 0);			if (mlo == mhi)				mlo = mhi = multadd(mhi, 10, 0);			else {				mlo = multadd(mlo, 10, 0);				mhi = multadd(mhi, 10, 0);			}		}	} else		for (i = 1;; i++) {			*s++ = dig = quorem(b,S) + '0';			if (i >= ilim)				break;			b = multadd(b, 10, 0);		}	/* Round off last digit */	b = lshift(b, 1);	j = cmp(b, S);	if (j > 0 || j == 0 && dig & 1) { roundoff:		while (*--s == '9')			if (s == s0) {				k++;				*s++ = '1';				goto ret;			}		++*s++;	} else {		while (*--s == '0');		s++;	} ret:	Bfree(S);	if (mhi) {		if (mlo && mlo != mhi)			Bfree(mlo);		Bfree(mhi);	} ret1:	Bfree(b);	if (s == s0) {	/* don't return empty string */		*s++ = '0';		k = 0;	}	*s = 0;	*decpt = k + 1;	if (rve)		*rve = s;	return s0;	}#ifdef __cplusplus}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -