📄 newmat4.cpp
字号:
//$$ newmat4.cpp Constructors, ReDimension, basic utilities
// Copyright (C) 1991,2,3,4: R B Davies
#include "include.h"
#include "newmat.h"
#include "newmatrc.h"
//#define REPORT { static ExeCounter ExeCount(__LINE__,4); ++ExeCount; }
#define REPORT {}
/*************************** general utilities *************************/
static int tristore(int n) // els in triangular matrix
{ return (n*(n+1))/2; }
/****************************** constructors ***************************/
GeneralMatrix::GeneralMatrix()
{ store=0; storage=0; nrows=0; ncols=0; tag=-1; }
GeneralMatrix::GeneralMatrix(ArrayLengthSpecifier s)
{
REPORT
storage=s.Value(); tag=-1;
if (storage)
{
store = new Real [storage]; MatrixErrorNoSpace(store);
MONITOR_REAL_NEW("Make (GenMatrix)",storage,store)
}
else store = 0;
}
Matrix::Matrix(int m, int n) : GeneralMatrix(m*n)
{ REPORT nrows=m; ncols=n; }
SymmetricMatrix::SymmetricMatrix(ArrayLengthSpecifier n)
: GeneralMatrix(tristore(n.Value()))
{ REPORT nrows=n.Value(); ncols=n.Value(); }
UpperTriangularMatrix::UpperTriangularMatrix(ArrayLengthSpecifier n)
: GeneralMatrix(tristore(n.Value()))
{ REPORT nrows=n.Value(); ncols=n.Value(); }
LowerTriangularMatrix::LowerTriangularMatrix(ArrayLengthSpecifier n)
: GeneralMatrix(tristore(n.Value()))
{ REPORT nrows=n.Value(); ncols=n.Value(); }
DiagonalMatrix::DiagonalMatrix(ArrayLengthSpecifier m) : GeneralMatrix(m)
{ REPORT nrows=m.Value(); ncols=m.Value(); }
Matrix::Matrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Rt);
GetMatrix(gmx);
}
RowVector::RowVector(const BaseMatrix& M) : Matrix(M)
{
if (nrows!=1)
{
Tracer tr("RowVector");
Throw(VectorException(*this));
}
}
ColumnVector::ColumnVector(const BaseMatrix& M) : Matrix(M)
{
if (ncols!=1)
{
Tracer tr("ColumnVector");
Throw(VectorException(*this));
}
}
SymmetricMatrix::SymmetricMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Sm);
GetMatrix(gmx);
}
UpperTriangularMatrix::UpperTriangularMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::UT);
GetMatrix(gmx);
}
LowerTriangularMatrix::LowerTriangularMatrix(const BaseMatrix& M)
{
REPORT // CheckConversion(M);
MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::LT);
GetMatrix(gmx);
}
DiagonalMatrix::DiagonalMatrix(const BaseMatrix& M)
{
REPORT //CheckConversion(M);
MatrixConversionCheck mcc;
GeneralMatrix* gmx=((BaseMatrix&)M).Evaluate(MatrixType::Dg);
GetMatrix(gmx);
}
GeneralMatrix::~GeneralMatrix()
{
if (store)
{
MONITOR_REAL_DELETE("Free (GenMatrix)",storage,store)
#ifdef Version21
delete [] store;
#else
delete [storage] store;
#endif
}
}
CroutMatrix::CroutMatrix(const BaseMatrix& m)
{
REPORT
Tracer tr("CroutMatrix");
GeneralMatrix* gm = ((BaseMatrix&)m).Evaluate(MatrixType::Rt);
GetMatrix(gm);
if (nrows!=ncols) Throw(NotSquareException(*this));
d=TRUE; sing=FALSE;
indx=new int [nrows]; MatrixErrorNoSpace(indx);
MONITOR_INT_NEW("Index (CroutMat)",nrows,indx)
ludcmp();
}
CroutMatrix::~CroutMatrix()
{
MONITOR_INT_DELETE("Index (CroutMat)",nrows,indx)
#ifdef Version21
delete [] indx;
#else
delete [nrows] indx;
#endif
}
//ReturnMatrixX::ReturnMatrixX(GeneralMatrix& gmx)
//{
// REPORT
// gm = gmx.Image(); gm->ReleaseAndDelete();
//}
#ifndef TEMPS_DESTROYED_QUICKLY_R
GeneralMatrix::operator ReturnMatrixX() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
return ReturnMatrixX(gm);
}
#else
GeneralMatrix::operator ReturnMatrixX&() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
ReturnMatrixX* x = new ReturnMatrixX(gm);
MatrixErrorNoSpace(x); return *x;
}
#endif
#ifndef TEMPS_DESTROYED_QUICKLY_R
ReturnMatrixX GeneralMatrix::ForReturn() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
return ReturnMatrixX(gm);
}
#else
ReturnMatrixX& GeneralMatrix::ForReturn() const
{
REPORT
GeneralMatrix* gm = Image(); gm->ReleaseAndDelete();
ReturnMatrixX* x = new ReturnMatrixX(gm);
MatrixErrorNoSpace(x); return *x;
}
#endif
/**************************** ReDimension matrices ***************************/
void GeneralMatrix::ReDimension(int nr, int nc, int s)
{
REPORT
if (store)
{
MONITOR_REAL_DELETE("Free (ReDimensi)",storage,store)
#ifdef Version21
delete [] store;
#else
delete [storage] store;
#endif
}
storage=s; nrows=nr; ncols=nc; tag=-1;
if (s)
{
store = new Real [storage]; MatrixErrorNoSpace(store);
MONITOR_REAL_NEW("Make (ReDimensi)",storage,store)
}
else store = 0;
}
void Matrix::ReDimension(int nr, int nc)
{ REPORT GeneralMatrix::ReDimension(nr,nc,nr*nc); }
void SymmetricMatrix::ReDimension(int nr)
{ REPORT GeneralMatrix::ReDimension(nr,nr,tristore(nr)); }
void UpperTriangularMatrix::ReDimension(int nr)
{ REPORT GeneralMatrix::ReDimension(nr,nr,tristore(nr)); }
void LowerTriangularMatrix::ReDimension(int nr)
{ REPORT GeneralMatrix::ReDimension(nr,nr,tristore(nr)); }
void DiagonalMatrix::ReDimension(int nr)
{ REPORT GeneralMatrix::ReDimension(nr,nr,nr); }
void RowVector::ReDimension(int nc)
{ REPORT GeneralMatrix::ReDimension(1,nc,nc); }
void ColumnVector::ReDimension(int nr)
{ REPORT GeneralMatrix::ReDimension(nr,1,nr); }
void RowVector::ReDimension(int nr, int nc)
{
Tracer tr("RowVector::ReDimension");
if (nr != 1) Throw(VectorException(*this));
REPORT GeneralMatrix::ReDimension(1,nc,nc);
}
void ColumnVector::ReDimension(int nr, int nc)
{
Tracer tr("ColumnVector::ReDimension");
if (nc != 1) Throw(VectorException(*this));
REPORT GeneralMatrix::ReDimension(nr,1,nr);
}
/********************* manipulate types, storage **************************/
int GeneralMatrix::search(const BaseMatrix* s) const
{ REPORT return (s==this) ? 1 : 0; }
int GenericMatrix::search(const BaseMatrix* s) const
{ REPORT return gm->search(s); }
int MultipliedMatrix::search(const BaseMatrix* s) const
{ REPORT return bm1->search(s) + bm2->search(s); }
int ShiftedMatrix::search(const BaseMatrix* s) const
{ REPORT return bm->search(s); }
int NegatedMatrix::search(const BaseMatrix* s) const
{ REPORT return bm->search(s); }
int ConstMatrix::search(const BaseMatrix* s) const
{ REPORT return (s==cgm) ? 1 : 0; }
int ReturnMatrixX::search(const BaseMatrix* s) const
{ REPORT return (s==gm) ? 1 : 0; }
MatrixType Matrix::Type() const { return MatrixType::Rt; }
MatrixType SymmetricMatrix::Type() const { return MatrixType::Sm; }
MatrixType UpperTriangularMatrix::Type() const { return MatrixType::UT; }
MatrixType LowerTriangularMatrix::Type() const { return MatrixType::LT; }
MatrixType DiagonalMatrix::Type() const { return MatrixType::Dg; }
MatrixType RowVector::Type() const { return MatrixType::RV; }
MatrixType ColumnVector::Type() const { return MatrixType::CV; }
MatrixType CroutMatrix::Type() const { return MatrixType::Ct; }
MatrixType BandMatrix::Type() const { return MatrixType::BM; }
MatrixType UpperBandMatrix::Type() const { return MatrixType::UB; }
MatrixType LowerBandMatrix::Type() const { return MatrixType::LB; }
MatrixType SymmetricBandMatrix::Type() const { return MatrixType::SB; }
MatrixBandWidth BaseMatrix::BandWidth() const { return -1; }
MatrixBandWidth DiagonalMatrix::BandWidth() const { return 0; }
MatrixBandWidth BandMatrix::BandWidth() const
{ return MatrixBandWidth(lower,upper); }
MatrixBandWidth GenericMatrix::BandWidth() const { return gm->BandWidth(); }
MatrixBandWidth AddedMatrix::BandWidth() const
{ return gm1->BandWidth() + gm2->BandWidth(); }
MatrixBandWidth SPMatrix::BandWidth() const
{ return gm1->BandWidth().minimum(gm2->BandWidth()); }
MatrixBandWidth MultipliedMatrix::BandWidth() const
{ return gm1->BandWidth() * gm2->BandWidth(); }
MatrixBandWidth ConcatenatedMatrix::BandWidth() const { return -1; }
MatrixBandWidth SolvedMatrix::BandWidth() const { return -1; }
MatrixBandWidth ScaledMatrix::BandWidth() const { return gm->BandWidth(); }
MatrixBandWidth NegatedMatrix::BandWidth() const { return gm->BandWidth(); }
MatrixBandWidth TransposedMatrix::BandWidth() const
{ return gm->BandWidth().t(); }
MatrixBandWidth InvertedMatrix::BandWidth() const { return -1; }
MatrixBandWidth RowedMatrix::BandWidth() const { return -1; }
MatrixBandWidth ColedMatrix::BandWidth() const { return -1; }
MatrixBandWidth DiagedMatrix::BandWidth() const { return 0; }
MatrixBandWidth MatedMatrix::BandWidth() const { return -1; }
MatrixBandWidth ConstMatrix::BandWidth() const { return cgm->BandWidth(); }
MatrixBandWidth ReturnMatrixX::BandWidth() const { return gm->BandWidth(); }
MatrixBandWidth GetSubMatrix::BandWidth() const
{
if (row_skip==col_skip && row_number==col_number) return gm->BandWidth();
else return MatrixBandWidth(-1);
}
/************************ the memory managment tools **********************/
// Rules regarding tDelete, reuse, GetStore
// All matrices processed during expression evaluation must be subject
// to exactly one of reuse(), tDelete(), GetStore() or BorrowStore().
// If reuse returns TRUE the matrix must be reused.
// GetMatrix(gm) always calls gm->GetStore()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -