📄 ds6.5.1.htm
字号:
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=gb2312">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>数 据 结 构</title>
<meta name="Microsoft Theme" content="hounk 010">
</head>
<body background bgcolor="#000099" text="#CCCC99" link="#FF9900" vlink="#996600" alink="#FF3300">
<!--mstheme--><font face="宋体"><p:colorscheme
colors="#0000FF,#FFFFFF,#000000,#FFCC66,#00FFFF,#3366FF,#FF0033,#FFFF00"/>
<p align="center"><b><span style="mso-bidi-font-size: 10.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA"><font color="#FFFF00" size="6">
赫夫曼树及其应用</font></span></b></p>
<p class="MsoNormal"><span style="mso-spacerun: yes" lang="EN-US"><font color="#FFFFFF"><b><font size="5">
</font></b></font></span><font color="#FFFFFF"><b><font size="5"><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
"Times New Roman"">最优二叉树,也称哈夫曼(</span><span lang="EN-US">Haffman</span><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
"Times New Roman"">)树,是指对于一组带有确定权值的叶结点,构造的具有最小带权路径长度的二叉树。</span></font></b></font></p>
<p class="MsoNormal"><span style="mso-spacerun: yes" lang="EN-US"><font color="#FFFFFF"><b><font size="5">
</font></b></font></span><font color="#FFFFFF"><b><font size="5"><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
"Times New Roman"">那么什么是二叉树的带权路径长度呢?</span></font></b></font></p>
<p style="margin-bottom: 0"><font size="5" color="#FFFFFF"><b><span style="mso-spacerun: yes; mso-bidi-font-size: 10.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA" lang="EN-US">
</span><span style="mso-bidi-font-size: 10.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">在前面我们介绍过路径和结点的路径长度的概念,而二叉树的路径长度则是指由根结点到所有叶结点的路径长度之和。如果二叉树中的叶结点都具有一定的权值,则可将这一概念加以推广。设二叉树具有</span><span lang="EN-US" style="mso-bidi-font-size: 10.0pt; font-family: Times New Roman; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">n</span><span style="mso-bidi-font-size: 10.0pt; font-family: 宋体; mso-ascii-font-family: Times New Roman; mso-hansi-font-family: Times New Roman; mso-bidi-font-family: Times New Roman; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">个带权值的叶结点,那么从根结点到各个叶结点的路径长度与相应结点权值的乘积之和叫做二叉树的带权路径长度,记为:</span></b></font>
<p align="center" style="margin-top: 4"><img border="0" src="ds6.5.1.gif" width="185" height="55"></p>
<p class="MsoNormal"><b><font size="5" color="#FFFFFF"><span style="font-family:宋体;mso-ascii-font-family:"Times New Roman";
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -