📄 uip.c
字号:
} /* This is where the input processing starts. */ UIP_STAT(++uip_stat.ip.recv); /* Check validity of the IP header. */ if(BUF->vhl != 0x45) { /* IP version and header length. */ UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.vhlerr); //sprintf(tempStr,"ip: invalid version or header length with BUFVhl=0x%x.", BUF->vhl); //UIP_LOG(tempStr); UIP_LOG("ip: invalid version or header length."); goto drop; } /* Check the size of the packet. If the size reported to us in uip_len doesn't match the size reported in the IP header, there has been a transmission error and we drop the packet. */#if UIP_BUFSIZE >= 256 if(BUF->len[0] != (uip_len >> 8)) { UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.hblenerr); //sprintf(tempStr,"ip: invalid length, high byte with buflen=0x%x-%x,uip_len=0x%x", BUF->len[0],BUF->len[1],uip_len); //UIP_LOG(tempStr); UIP_LOG("ip: invalid length, high byte."); /* IP length, high byte. */ goto drop; } if(BUF->len[1] != (uip_len & 0xff)) { UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.lblenerr); UIP_LOG("ip: invalid length, low byte."); /* IP length, low byte. */ goto drop; }#else if(BUF->len[0] != 0) { /* IP length, high byte. */ UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.hblenerr); UIP_LOG("ip: invalid length, high byte."); goto drop; } if(BUF->len[1] != uip_len) { /* IP length, low byte. */ UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.lblenerr); UIP_LOG("ip: invalid length, low byte."); goto drop; }#endif /* UIP_BUFSIZE >= 256 */ if(BUF->ipoffset[0] & 0x3f) { /* We don't allow IP fragments. */ UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.fragerr); UIP_LOG("ip: fragment dropped."); goto drop; } /* Check if the packet is destined for our IP address. */ if(BUF->destipaddr[0] != htons(((u16_t)UIP_IPADDR0 << 8) | UIP_IPADDR1)) { UIP_STAT(++uip_stat.ip.drop); UIP_LOG("ip: packet not for us."); goto drop; } if(BUF->destipaddr[1] != htons(((u16_t)UIP_IPADDR2 << 8) | UIP_IPADDR3)) { UIP_STAT(++uip_stat.ip.drop); UIP_LOG("ip: dest wrong low"); goto drop; } if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header checksum. */ UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.ipchkerr); UIP_LOG("ip: bad checksum."); goto drop; } if(BUF->proto == IP_PROTO_TCP) /* Check for TCP packet. If so, jump to the tcp_input label. */ goto tcp_input; if(BUF->proto != IP_PROTO_ICMP) { /* We only allow ICMP packets from here. */ UIP_STAT(++uip_stat.ip.drop); UIP_STAT(++uip_stat.ip.protoerr); UIP_LOG("ip: neither tcp nor icmp."); goto drop; } UIP_STAT(++uip_stat.icmp.recv); /* ICMP echo (i.e., ping) processing. This is simple, we only change the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP checksum before we return the packet. */ if(ICMPBUF->type != ICMP_ECHO) { UIP_STAT(++uip_stat.icmp.drop); UIP_STAT(++uip_stat.icmp.typeerr); UIP_LOG("icmp: not icmp echo."); goto drop; } ICMPBUF->type = ICMP_ECHO_REPLY; if(ICMPBUF->icmpchksum >= htons(0xffff - (ICMP_ECHO << 8))) { ICMPBUF->icmpchksum += htons(ICMP_ECHO << 8) + 1; } else { ICMPBUF->icmpchksum += htons(ICMP_ECHO << 8); } /* Swap IP addresses. */ tmpport = BUF->destipaddr[0]; BUF->destipaddr[0] = BUF->srcipaddr[0]; BUF->srcipaddr[0] = tmpport; tmpport = BUF->destipaddr[1]; BUF->destipaddr[1] = BUF->srcipaddr[1]; BUF->srcipaddr[1] = tmpport; UIP_STAT(++uip_stat.icmp.sent); goto send; /* TCP input processing. */ tcp_input: //sprintf(tempStr,"Rcvd %uth TCP packet.", uip_stat.tcp.recv); //strcat(debugStr,tempStr); //UIP_LOG(tempStr); UIP_STAT(++uip_stat.tcp.recv); if(uip_tcpchksum() != 0xffff) { /* Compute and check the TCP checksum. */ UIP_STAT(++uip_stat.tcp.drop); UIP_STAT(++uip_stat.tcp.chkerr); UIP_LOG("tcp: bad checksum."); goto drop; } /* Demultiplex this segment. */ /* First check any active connections. */ for(uip_conn = uip_conns[0]; uip_conn < uip_conns[UIP_CONNS]; uip_conn += sizeof(struct uip_conn)) { if(uip_conn->tcpstateflags != CLOSED && BUF->destport == uip_conn->lport && BUF->srcport == uip_conn->rport) { if (BUF->srcipaddr[0] == uip_conn->ripaddr[0] && BUF->srcipaddr[1] == uip_conn->ripaddr[1]) goto found; } } /* If we didn't find and active connection that expected the packet, either this packet is an old duplicate, or this is a SYN packet destined for a connection in LISTEN. If the SYN flag isn't set, it is an old packet and we send a RST. */ if(BUF->flags != TCP_SYN) goto reset; tmpport = BUF->destport; /* Next, check listening connections. */ for(c = 0; c < UIP_LISTENPORTS && uip_listenports[c] != 0; ++c) { if(tmpport == uip_listenports[c]) goto found_listen; } /* No matching connection found, so we send a RST packet. */ UIP_STAT(++uip_stat.tcp.synrst); reset: /* We do not send resets in response to resets. */ if(BUF->flags & TCP_RST) goto drop; UIP_STAT(++uip_stat.tcp.rst); BUF->flags = TCP_RST | TCP_ACK; uip_len = 40; BUF->tcpoffset = 5 << 4; /* Flip the seqno and ackno fields in the TCP header. */ c = BUF->seqno[3]; BUF->seqno[3] = BUF->ackno[3]; BUF->ackno[3] = c; c = BUF->seqno[2]; BUF->seqno[2] = BUF->ackno[2]; BUF->ackno[2] = c; c = BUF->seqno[1]; BUF->seqno[1] = BUF->ackno[1]; BUF->ackno[1] = c; c = BUF->seqno[0]; BUF->seqno[0] = BUF->ackno[0]; BUF->ackno[0] = c; /* We also have to increase the sequence number we are acknowledging. If the least significant byte overflowed, we need to propagate the carry to the other bytes as well. */ if(++BUF->ackno[3] == 0) { if(++BUF->ackno[2] == 0) { if(++BUF->ackno[1] == 0) { ++BUF->ackno[0]; } } } /* Swap port numbers. */ tmpport = BUF->srcport; BUF->srcport = BUF->destport; BUF->destport = tmpport; /* Swap IP addresses. */ tmpport = BUF->destipaddr[0]; BUF->destipaddr[0] = BUF->srcipaddr[0]; BUF->srcipaddr[0] = tmpport; tmpport = BUF->destipaddr[1]; BUF->destipaddr[1] = BUF->srcipaddr[1]; BUF->srcipaddr[1] = tmpport; /* And send out the RST packet! */ goto tcp_send_noconn; /* This label will be jumped to if we matched the incoming packet with a connection in LISTEN. In that case, we should create a new connection and send a SYNACK in return. */ found_listen: /* First we check if there are any connections avaliable. Unused connections are kept in the same table as used connections, but unused ones have the tcpstate set to CLOSED. */ for(c = 0; c < UIP_CONNS; ++c) { if(uip_conns[c].tcpstateflags == CLOSED) goto found_unused_connection; } for(c = 0; c < UIP_CONNS; ++c) { if(uip_conns[c].tcpstateflags == TIME_WAIT) goto found_unused_connection; } /* All connections are used already, we drop packet and hope that the remote end will retransmit the packet at a time when we have more spare connections. */ UIP_STAT(++uip_stat.tcp.syndrop); UIP_LOG("tcp: found no unused connections."); goto drop; /* This label will be jumped to if we have found an unused connection that we can use. */ found_unused_connection: uip_conn = uip_conns[c]; /* Fill in the necessary fields for the new connection. */ uip_conn->timer = UIP_RTO; uip_conn->nrtx = 0; uip_conn->lport = BUF->destport; uip_conn->rport = BUF->srcport; uip_conn->ripaddr[0] = BUF->srcipaddr[0]; uip_conn->ripaddr[1] = BUF->srcipaddr[1]; uip_conn->tcpstateflags = SYN_RCVD | UIP_OUTSTANDING; UIP_LOG("SYN_RCVD,"); uip_conn->snd_nxt[0] = uip_conn->ack_nxt[0] = iss[0]; uip_conn->snd_nxt[1] = uip_conn->ack_nxt[1] = iss[1]; uip_conn->snd_nxt[2] = uip_conn->ack_nxt[2] = iss[2]; uip_conn->snd_nxt[3] = uip_conn->ack_nxt[3] = iss[3]; uip_add_ack_nxt(1); /* rcv_nxt should be the seqno from the incoming packet + 1. */ uip_conn->rcv_nxt[3] = BUF->seqno[3]; uip_conn->rcv_nxt[2] = BUF->seqno[2]; uip_conn->rcv_nxt[1] = BUF->seqno[1]; uip_conn->rcv_nxt[0] = BUF->seqno[0]; uip_add_rcv_nxt(1); /* Parse the TCP MSS option, if present. */ if((BUF->tcpoffset & 0xf0) > 0x50) { for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { opt = uip_buf[40 + UIP_LLH_LEN + c]; if(opt == 0x00) { /* End of options. */ break; } else if(opt == 0x01) { ++c; /* NOP option. */ } else if(opt == 0x02 && uip_buf[40 + UIP_LLH_LEN + c + 1] == 0x04) { /* An MSS option with the right option length. */ tmpport = (uip_buf[40 + UIP_LLH_LEN + c + 2] << 8) | uip_buf[40 + UIP_LLH_LEN + c + 3]; uip_conn->mss = tmpport > UIP_TCP_MSS? UIP_TCP_MSS: tmpport; /* And we are done processing options. */ break; } else { /* All other options have a length field, so that we easily can skip past them. */ c += uip_buf[40 + UIP_LLH_LEN + c + 1]; } } } /* Our response will be a SYNACK. */#if UIP_ACTIVE_OPEN tcp_send_synack: BUF->flags = TCP_ACK; tcp_send_syn: BUF->flags |= TCP_SYN;#else /* UIP_ACTIVE_OPEN */ tcp_send_synack: BUF->flags = TCP_SYN | TCP_ACK;#endif /* UIP_ACTIVE_OPEN */ /* We send out the TCP Maximum Segment Size option with our SYNACK. */ BUF->optdata[0] = 2; BUF->optdata[1] = 4; BUF->optdata[2] = (UIP_TCP_MSS) / 256; BUF->optdata[3] = (UIP_TCP_MSS) & 255; uip_len = 44; BUF->tcpoffset = 6 << 4; goto tcp_send; /* This label will be jumped to if we found an active connection. */ found: uip_flags = 0; /* We do a very naive form of TCP reset processing; we just accept any RST and kill our connection. We should in fact check if the sequence number of this reset is wihtin our advertised window before we accept the reset. */ if(BUF->flags & TCP_RST) { uip_conn->tcpstateflags = CLOSED; UIP_LOG("tcp: got reset, connection CLOSED."); uip_flags = UIP_ABORT; UIP_APPCALL(); goto drop; } /* All segments that are come thus far should have the ACK flag set, otherwise we drop the packet. */ if(!(BUF->flags & TCP_ACK)) { UIP_STAT(++uip_stat.tcp.drop); UIP_STAT(++uip_stat.tcp.ackerr); UIP_LOG("tcp: dropped non-ack segment."); goto drop; } /* Calculated the length of the data, if the application has sent any data to us. */ c = (BUF->tcpoffset >> 4) << 2; /* uip_len will contain the length of the actual TCP data. This is calculated by subtracing the length of the TCP header (in c) and the length of the IP header (20 bytes). */ uip_len = uip_len - c - 20; /* First, check if the sequence number of the incoming packet is what we're expecting next. If not, we send out an ACK with the correct numbers in. */ c = BUF->seqno[0] != uip_conn->rcv_nxt[0];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -