⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgprsaglue.c

📁 vc环境下的pgp源码
💻 C
字号:
/*
 * pgpRSAGlue.c - The interface between bignum math and RSA operations.
 * This layer's primary reason for existence is to allow adaptation
 * to other RSA math libraries for legal reasons.
 *
 * Written by Colin Plumb.
 *
 * $Id: pgpRSAGlue.c,v 1.17 1998/10/08 00:19:14 heller Exp $
 */

#include "pgpSDKBuildFlags.h"

#ifndef PGP_RSA
#error "PGP_RSA requires a value"
#endif

/* This entire module is dependent on RSA being enabled */
#if PGP_RSA

#include "pgpConfig.h"
#include <string.h>

 
/*
 * An alternative version of this module is used if RSAREF is needed.  This
 * entire source file is under the control of the following conditional:
 */
#if PGP_USEPGPFORRSA	/* [ */


#include "pgpRSAGlue.h"
#include "pgpKeyMisc.h"
#include "bn.h"
#include "pgpErrors.h"
#include "pgpRandomX9_17.h"
#include "pgpUsuals.h"

/*
 * This is handy for debugging, but VERY VERY DANGEROUS for production -
 * it nicely prints every detail of your secret key!
 */
#define BNDEBUG 0

#if BNDEBUG
/* Some debugging hooks which have been left in for now. */
#include "bnprint.h"
#define bndPut(prompt, bn) (fputs(prompt, stdout), bnPrint(stdout, bn), \
				putchar('\n'))
#define bndPrintf printf
#else
#define bndPut(prompt, bn) ((void)(prompt),(void)(bn))
#if __GNUC__ > 1
/* Non-ANSI, but supresses warnings about expressions with no effect */
#define bndPrintf(arg...) (void)0
#else
/* ANSI-compliant - cast entire comma expression to void */
#define bndPrintf (void)
#endif
#endif


/*
 * If you're using a legally encumbered library (ugh!) this will be
 * printed in the program banner.
 */
char const banner_legalese[] = "";
/*
 * This returns TRUE if the key is too big, returning the
 * maximum number of bits that the library can accept.
 * The limit is currently set for pragmatic reasons.
 */
#define MAXSIZE 4096
int
rsaKeyTooBig(RSApub const *pub, RSAsec const *sec)
{
	if (pub) {
		if (bnBits(&pub->n) > MAXSIZE)
			return MAXSIZE;
	}
	if (sec) {
		if (bnBits(&sec->n) > MAXSIZE)
			return MAXSIZE;
	}
	return 0; /* OK */
}


int
rsaPublicEncrypt(BigNum *bn, PGPByte const *in, unsigned len,
	RSApub const *pub, PGPRandomContext const *rc)
{
	unsigned bytes = (bnBits(&pub->n)+7)/8;
	pgpPKCSPack(bn, in, len, PKCS_PAD_ENCRYPTED, bytes, rc);

bndPrintf("RSA encrypting.\n");
bndPut("plaintext = ", bn);
	return bnExpMod(bn, bn, &pub->e, &pub->n);
}


/*
 * This performs a modular exponentiation using the Chinese Remainder
 * Algorithm when the modulus is known to have two relatively prime
 * factors n = p * q, and u = p^-1 (mod q) has been precomputed.
 *
 * The chinese remainder algorithm lets a computation mod n be performed
 * mod p and mod q, and the results combined.  Since it takes
 * (considerably) more than twice as long to perform modular exponentiation
 * mod n as it does to perform it mod p and mod q, time is saved.
 *
 * If x is the desired result, let xp and xq be the values of x mod p
 * and mod q, respectively.  Obviously, x = xp + p * k for some k.
 * Taking this mod q, xq == xp + p*k (mod q), so p*k == xq-xp (mod q)
 * and k == p^-1 * (xq-xp) (mod q), so k = u * (xq-xp mod q) mod q.
 * After that, x = xp + p * k.
 *
 * Another savings comes from reducing the exponent d modulo phi(p)
 * and phi(q).  Here, we assume that p and q are prime, so phi(p) = p-1
 * and phi(q) = q-1.
 */
static int
bnExpModCRA(BigNum *x, BigNum const *d,
	BigNum const *p, BigNum const *q, BigNum const *u)
{
	BigNum xp, xq, k;
	int i;
	PGPMemoryMgrRef	mgr	= x->mgr;

bndPrintf("Performing Chinese Remainder Algorithm\n");
bndPut("x = ", x);
bndPut("p = ", p);
bndPut("q = ", q);
bndPut("d = ", d);
bndPut("u = ", u);

	bnBegin(&xp, mgr, TRUE);
	bnBegin(&xq, mgr, TRUE);
	bnBegin(&k, mgr, TRUE);

	/* Compute xp = (x mod p) ^ (d mod p-1) mod p */
	if (bnCopy(&xp, p) < 0)		/* First, use xp to hold p-1 */
		goto fail;
	(void)bnSubQ(&xp, 1);		/* p > 1, so subtracting is safe. */
	if (bnMod(&k, d, &xp) < 0)	/* k = d mod (p-1) */
		goto fail;
bndPut("d mod p-1 = ", &k);
	if (bnMod(&xp, x, p) < 0)	/* Now xp = (x mod p) */
		goto fail;
bndPut("x mod p = ", &xp);
	if (bnExpMod(&xp, &xp, &k, p) < 0)	/* xp = (x mod p)^k mod p */
		goto fail;
bndPut("xp = x^d mod p = ", &xp);

	/* Compute xq = (x mod q) ^ (d mod q-1) mod q */
	if (bnCopy(&xq, q) < 0)		/* First, use xq to hold q-1 */
		goto fail;
	(void)bnSubQ(&xq, 1);		/* q > 1, so subtracting is safe. */
	if (bnMod(&k, d, &xq) < 0)	/* k = d mod (q-1) */
		goto fail;
bndPut("d mod q-1 = ", &k);
	if (bnMod(&xq, x, q) < 0)	/* Now xq = (x mod q) */
		goto fail;
bndPut("x mod q = ", &xq);
	if (bnExpMod(&xq, &xq, &k, q) < 0)	/* xq = (x mod q)^k mod q */
		goto fail;
bndPut("xq = x^d mod q = ", &xq);

	/* xp < p and PGP has p < q, so this is a no-op, but just in case */
	if (bnMod(&k, &xp, q) < 0)
		goto fail;	
bndPut("xp mod q = ", &k);
	
	i = bnSub(&xq, &k);
bndPut("xq - xp = ", &xq);
bndPrintf("With sign %d\n", i);
	if (i < 0)
		goto fail;
	if (i) {
		/*
		 * Borrow out - xq-xp is negative, so bnSub returned
		 * xp-xq instead, the negative of the true answer.
		 * Add q back (which is subtracting from the negative)
		 * so the sign flips again.
		 */
		i = bnSub(&xq, q);
		if (i < 0)
			goto fail;
bndPut("xq - xp mod q = ", &xq);
bndPrintf("With sign %d\n", i);		/* Must be 1 */
	}

	/* Compute k = xq * u mod q */
	if (bnMul(&k, u, &xq) < 0)
		goto fail;
bndPut("(xq-xp) * u = ", &k);
	if (bnMod(&k, &k, q) < 0)
		goto fail;
bndPut("k = (xq-xp)*u % q = ", &k);

	/* Now x = k * p + xp is the final answer */
	if (bnMul(x, &k, p) < 0)
		goto fail;
bndPut("k * p = ", x);
	if (bnAdd(x, &xp) < 0)
		goto fail;
bndPut("k*p + xp = ", x);

#if BNDEBUG	/* @@@ DEBUG - do it the slow way for comparison */
	if (bnMul(&xq, p, q) < 0)
		goto fail;
bndPut("n = p*q = ", &xq);
	if (bnExpMod(&xp, x, d, &xq) < 0)
		goto fail;
bndPut("x^d mod n = ", &xp);
	if (bnCmp(x, &xp) != 0) {
bndPrintf("Nasty!!!\n");
		goto fail;
	}
	bnSetQ(&k, 17);
	bnExpMod(&xp, &xp, &k, &xq);
bndPut("x^17 mod n = ", &xp);
#endif

	bnEnd(&xp);
	bnEnd(&xq);
	bnEnd(&k);
	return 0;

fail:
	bnEnd(&xp);
	bnEnd(&xq);
	bnEnd(&k);
	return kPGPError_OutOfMemory;
}

/*
 * This does an RSA signing operation, which is very similar, except
 * that the padding differs.  The type is 1, and the padding is all 1's
 * (hex 0xFF).  In addition, if the data is a DER-padded MD5 hash, there's
 * an option for encoding it with the old PGP 2.2 format, in which case
 * that's all replaced by a 1 byte indicating MD5.
 *
 * When decrypting, distinguishing these is a bit trickier, since the
 * second most significant byte is 1 in both cases, but in general,
 * it could only cause confusion if the PGP hash were all 1's.
 *
 * To summarize, the formats are:
 *
 * Position     Value   Function
 * n-1           0      This is needed to ensure that the padded number
 *                      is less than the modulus.
 * n-2           1      The padding type (all ones).
 * n-3..len+1   255     All ones padding to ensure signatures are rare.
 * len           0      Zero byte to mark the end of the padding
 * len-1..x     ASN.1	The ASN.1 DER magic cookie (18 bytes)
 * x-1..0       data    The payload MD5 hash (16 bytes).
 *
 *
 * Position     Value
 * n-1           0
 * n-2           1	"This is MD5"
 * n-2..n-len-2 data    Supplied payload MD5 hash (len == 16).
 * n-len-2       0      Zero byte to mark the end of the padding
 * n-len-3..1   255     All ones padding.
 * 0             1      The padding type (all ones).
 *
 *
 * The reason for the all 1's padding is an extra consistency check.
 * A randomly invented signature will not decrypt to have the long
 * run of ones necessary for acceptance.
 *
 * Oh... the public key isn't needed to decrypt, but it's passed in
 * because a different glue library may need it for some reason.
 *
 * TODO: Have the caller put on the PKCS wrapper.  We can notice and
 * strip it off if we're trying to be compatible.
 */
static const PGPByte signedType = 1;

int
rsaPrivateEncrypt(BigNum *bn, PGPByte const *in, unsigned len,
	RSAsec const *sec)
{
	unsigned bytes = (bnBits(&sec->n)+7)/8;

	pgpPKCSPack(bn, in, len, PKCS_PAD_SIGNED, bytes,
		(PGPRandomContext const *)NULL);

bndPrintf("RSA signing.\n");
bndPut("plaintext = ", bn);
	return bnExpModCRA(bn, &sec->d, &sec->p, &sec->q, &sec->u);
}

/*
 * Decrypt a message with a public key.
 * These destroy (actually, replace with a decrypted version) the
 * input bignum bn.
 *
 * It recongizes the PGP 2.2 format, but not in all its generality;
 * only the one case (framing byte = 1, length = 16) which was ever
 * generated.  It fakes the DER prefix in that case.
 *
 * Performs an RSA signature check.  Returns a prefix of the unwrapped
 * data in the given buf.  Returns the length of the untruncated
 * data, which may exceed "len". Returns <0 on error.
 */
int
rsaPublicDecrypt(PGPByte *buf, unsigned len, BigNum *bn,
	RSApub const *pub)
{
	unsigned bytes;

bndPrintf("RSA signature checking.\n");
	if (bnExpMod(bn, bn, &pub->e, &pub->n) < 0)
		return kPGPError_OutOfMemory;
bndPut("decrypted = ", bn);
	bytes = (bnBits(&pub->n)+7)/8;
	return pgpPKCSUnpack(buf, len, bn, PKCS_PAD_SIGNED, bytes);
}


/*
 * Performs an RSA decryption.  Returns a prefix of the unwrapped
 * data in the given buf.  Returns the length of the untruncated
 * data, which may exceed "len". Returns <0 on error.
 */
int
rsaPrivateDecrypt(PGPByte *buf, unsigned len, BigNum *bn,
	RSAsec const *sec)
{
	unsigned bytes;

bndPrintf("RSA decrypting\n");
	if (bnExpModCRA(bn, &sec->d, &sec->p, &sec->q, &sec->u) < 0)
		return kPGPError_OutOfMemory;
bndPut("decrypted = ", bn);
	bytes = (bnBits(&sec->n)+7)/8;
	return pgpPKCSUnpack(buf, len, bn, PKCS_PAD_ENCRYPTED, bytes);
}

#endif /* ] PGP_USEPGPFORRSA */

#endif	/* PGP_RSA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -