📄 pgprsaglue.c
字号:
/*
* pgpRSAGlue.c - The interface between bignum math and RSA operations.
* This layer's primary reason for existence is to allow adaptation
* to other RSA math libraries for legal reasons.
*
* Written by Colin Plumb.
*
* $Id: pgpRSAGlue.c,v 1.17 1998/10/08 00:19:14 heller Exp $
*/
#include "pgpSDKBuildFlags.h"
#ifndef PGP_RSA
#error "PGP_RSA requires a value"
#endif
/* This entire module is dependent on RSA being enabled */
#if PGP_RSA
#include "pgpConfig.h"
#include <string.h>
/*
* An alternative version of this module is used if RSAREF is needed. This
* entire source file is under the control of the following conditional:
*/
#if PGP_USEPGPFORRSA /* [ */
#include "pgpRSAGlue.h"
#include "pgpKeyMisc.h"
#include "bn.h"
#include "pgpErrors.h"
#include "pgpRandomX9_17.h"
#include "pgpUsuals.h"
/*
* This is handy for debugging, but VERY VERY DANGEROUS for production -
* it nicely prints every detail of your secret key!
*/
#define BNDEBUG 0
#if BNDEBUG
/* Some debugging hooks which have been left in for now. */
#include "bnprint.h"
#define bndPut(prompt, bn) (fputs(prompt, stdout), bnPrint(stdout, bn), \
putchar('\n'))
#define bndPrintf printf
#else
#define bndPut(prompt, bn) ((void)(prompt),(void)(bn))
#if __GNUC__ > 1
/* Non-ANSI, but supresses warnings about expressions with no effect */
#define bndPrintf(arg...) (void)0
#else
/* ANSI-compliant - cast entire comma expression to void */
#define bndPrintf (void)
#endif
#endif
/*
* If you're using a legally encumbered library (ugh!) this will be
* printed in the program banner.
*/
char const banner_legalese[] = "";
/*
* This returns TRUE if the key is too big, returning the
* maximum number of bits that the library can accept.
* The limit is currently set for pragmatic reasons.
*/
#define MAXSIZE 4096
int
rsaKeyTooBig(RSApub const *pub, RSAsec const *sec)
{
if (pub) {
if (bnBits(&pub->n) > MAXSIZE)
return MAXSIZE;
}
if (sec) {
if (bnBits(&sec->n) > MAXSIZE)
return MAXSIZE;
}
return 0; /* OK */
}
int
rsaPublicEncrypt(BigNum *bn, PGPByte const *in, unsigned len,
RSApub const *pub, PGPRandomContext const *rc)
{
unsigned bytes = (bnBits(&pub->n)+7)/8;
pgpPKCSPack(bn, in, len, PKCS_PAD_ENCRYPTED, bytes, rc);
bndPrintf("RSA encrypting.\n");
bndPut("plaintext = ", bn);
return bnExpMod(bn, bn, &pub->e, &pub->n);
}
/*
* This performs a modular exponentiation using the Chinese Remainder
* Algorithm when the modulus is known to have two relatively prime
* factors n = p * q, and u = p^-1 (mod q) has been precomputed.
*
* The chinese remainder algorithm lets a computation mod n be performed
* mod p and mod q, and the results combined. Since it takes
* (considerably) more than twice as long to perform modular exponentiation
* mod n as it does to perform it mod p and mod q, time is saved.
*
* If x is the desired result, let xp and xq be the values of x mod p
* and mod q, respectively. Obviously, x = xp + p * k for some k.
* Taking this mod q, xq == xp + p*k (mod q), so p*k == xq-xp (mod q)
* and k == p^-1 * (xq-xp) (mod q), so k = u * (xq-xp mod q) mod q.
* After that, x = xp + p * k.
*
* Another savings comes from reducing the exponent d modulo phi(p)
* and phi(q). Here, we assume that p and q are prime, so phi(p) = p-1
* and phi(q) = q-1.
*/
static int
bnExpModCRA(BigNum *x, BigNum const *d,
BigNum const *p, BigNum const *q, BigNum const *u)
{
BigNum xp, xq, k;
int i;
PGPMemoryMgrRef mgr = x->mgr;
bndPrintf("Performing Chinese Remainder Algorithm\n");
bndPut("x = ", x);
bndPut("p = ", p);
bndPut("q = ", q);
bndPut("d = ", d);
bndPut("u = ", u);
bnBegin(&xp, mgr, TRUE);
bnBegin(&xq, mgr, TRUE);
bnBegin(&k, mgr, TRUE);
/* Compute xp = (x mod p) ^ (d mod p-1) mod p */
if (bnCopy(&xp, p) < 0) /* First, use xp to hold p-1 */
goto fail;
(void)bnSubQ(&xp, 1); /* p > 1, so subtracting is safe. */
if (bnMod(&k, d, &xp) < 0) /* k = d mod (p-1) */
goto fail;
bndPut("d mod p-1 = ", &k);
if (bnMod(&xp, x, p) < 0) /* Now xp = (x mod p) */
goto fail;
bndPut("x mod p = ", &xp);
if (bnExpMod(&xp, &xp, &k, p) < 0) /* xp = (x mod p)^k mod p */
goto fail;
bndPut("xp = x^d mod p = ", &xp);
/* Compute xq = (x mod q) ^ (d mod q-1) mod q */
if (bnCopy(&xq, q) < 0) /* First, use xq to hold q-1 */
goto fail;
(void)bnSubQ(&xq, 1); /* q > 1, so subtracting is safe. */
if (bnMod(&k, d, &xq) < 0) /* k = d mod (q-1) */
goto fail;
bndPut("d mod q-1 = ", &k);
if (bnMod(&xq, x, q) < 0) /* Now xq = (x mod q) */
goto fail;
bndPut("x mod q = ", &xq);
if (bnExpMod(&xq, &xq, &k, q) < 0) /* xq = (x mod q)^k mod q */
goto fail;
bndPut("xq = x^d mod q = ", &xq);
/* xp < p and PGP has p < q, so this is a no-op, but just in case */
if (bnMod(&k, &xp, q) < 0)
goto fail;
bndPut("xp mod q = ", &k);
i = bnSub(&xq, &k);
bndPut("xq - xp = ", &xq);
bndPrintf("With sign %d\n", i);
if (i < 0)
goto fail;
if (i) {
/*
* Borrow out - xq-xp is negative, so bnSub returned
* xp-xq instead, the negative of the true answer.
* Add q back (which is subtracting from the negative)
* so the sign flips again.
*/
i = bnSub(&xq, q);
if (i < 0)
goto fail;
bndPut("xq - xp mod q = ", &xq);
bndPrintf("With sign %d\n", i); /* Must be 1 */
}
/* Compute k = xq * u mod q */
if (bnMul(&k, u, &xq) < 0)
goto fail;
bndPut("(xq-xp) * u = ", &k);
if (bnMod(&k, &k, q) < 0)
goto fail;
bndPut("k = (xq-xp)*u % q = ", &k);
/* Now x = k * p + xp is the final answer */
if (bnMul(x, &k, p) < 0)
goto fail;
bndPut("k * p = ", x);
if (bnAdd(x, &xp) < 0)
goto fail;
bndPut("k*p + xp = ", x);
#if BNDEBUG /* @@@ DEBUG - do it the slow way for comparison */
if (bnMul(&xq, p, q) < 0)
goto fail;
bndPut("n = p*q = ", &xq);
if (bnExpMod(&xp, x, d, &xq) < 0)
goto fail;
bndPut("x^d mod n = ", &xp);
if (bnCmp(x, &xp) != 0) {
bndPrintf("Nasty!!!\n");
goto fail;
}
bnSetQ(&k, 17);
bnExpMod(&xp, &xp, &k, &xq);
bndPut("x^17 mod n = ", &xp);
#endif
bnEnd(&xp);
bnEnd(&xq);
bnEnd(&k);
return 0;
fail:
bnEnd(&xp);
bnEnd(&xq);
bnEnd(&k);
return kPGPError_OutOfMemory;
}
/*
* This does an RSA signing operation, which is very similar, except
* that the padding differs. The type is 1, and the padding is all 1's
* (hex 0xFF). In addition, if the data is a DER-padded MD5 hash, there's
* an option for encoding it with the old PGP 2.2 format, in which case
* that's all replaced by a 1 byte indicating MD5.
*
* When decrypting, distinguishing these is a bit trickier, since the
* second most significant byte is 1 in both cases, but in general,
* it could only cause confusion if the PGP hash were all 1's.
*
* To summarize, the formats are:
*
* Position Value Function
* n-1 0 This is needed to ensure that the padded number
* is less than the modulus.
* n-2 1 The padding type (all ones).
* n-3..len+1 255 All ones padding to ensure signatures are rare.
* len 0 Zero byte to mark the end of the padding
* len-1..x ASN.1 The ASN.1 DER magic cookie (18 bytes)
* x-1..0 data The payload MD5 hash (16 bytes).
*
*
* Position Value
* n-1 0
* n-2 1 "This is MD5"
* n-2..n-len-2 data Supplied payload MD5 hash (len == 16).
* n-len-2 0 Zero byte to mark the end of the padding
* n-len-3..1 255 All ones padding.
* 0 1 The padding type (all ones).
*
*
* The reason for the all 1's padding is an extra consistency check.
* A randomly invented signature will not decrypt to have the long
* run of ones necessary for acceptance.
*
* Oh... the public key isn't needed to decrypt, but it's passed in
* because a different glue library may need it for some reason.
*
* TODO: Have the caller put on the PKCS wrapper. We can notice and
* strip it off if we're trying to be compatible.
*/
static const PGPByte signedType = 1;
int
rsaPrivateEncrypt(BigNum *bn, PGPByte const *in, unsigned len,
RSAsec const *sec)
{
unsigned bytes = (bnBits(&sec->n)+7)/8;
pgpPKCSPack(bn, in, len, PKCS_PAD_SIGNED, bytes,
(PGPRandomContext const *)NULL);
bndPrintf("RSA signing.\n");
bndPut("plaintext = ", bn);
return bnExpModCRA(bn, &sec->d, &sec->p, &sec->q, &sec->u);
}
/*
* Decrypt a message with a public key.
* These destroy (actually, replace with a decrypted version) the
* input bignum bn.
*
* It recongizes the PGP 2.2 format, but not in all its generality;
* only the one case (framing byte = 1, length = 16) which was ever
* generated. It fakes the DER prefix in that case.
*
* Performs an RSA signature check. Returns a prefix of the unwrapped
* data in the given buf. Returns the length of the untruncated
* data, which may exceed "len". Returns <0 on error.
*/
int
rsaPublicDecrypt(PGPByte *buf, unsigned len, BigNum *bn,
RSApub const *pub)
{
unsigned bytes;
bndPrintf("RSA signature checking.\n");
if (bnExpMod(bn, bn, &pub->e, &pub->n) < 0)
return kPGPError_OutOfMemory;
bndPut("decrypted = ", bn);
bytes = (bnBits(&pub->n)+7)/8;
return pgpPKCSUnpack(buf, len, bn, PKCS_PAD_SIGNED, bytes);
}
/*
* Performs an RSA decryption. Returns a prefix of the unwrapped
* data in the given buf. Returns the length of the untruncated
* data, which may exceed "len". Returns <0 on error.
*/
int
rsaPrivateDecrypt(PGPByte *buf, unsigned len, BigNum *bn,
RSAsec const *sec)
{
unsigned bytes;
bndPrintf("RSA decrypting\n");
if (bnExpModCRA(bn, &sec->d, &sec->p, &sec->q, &sec->u) < 0)
return kPGPError_OutOfMemory;
bndPut("decrypted = ", bn);
bytes = (bnBits(&sec->n)+7)/8;
return pgpPKCSUnpack(buf, len, bn, PKCS_PAD_ENCRYPTED, bytes);
}
#endif /* ] PGP_USEPGPFORRSA */
#endif /* PGP_RSA */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -