📄 bnprime.c
字号:
* search, note that the search begins with the given number; if you're
* trying to generate consecutive primes, you must increment the previous
* one by two before calling this again.
*
* int (*f)(void *arg, int c), void *arg
* The function f argument, if non-NULL, is called with progress indicator
* characters for printing. A dot (.) is written every time a primality test
* is failed, a star (*) every time one is passed, and a slash (/) in the
* (very rare) case that the sieve was emptied without finding a prime
* and is being refilled. f is also passed the void *arg argument for
* private context storage. If f returns < 0, the test aborts and returns
* that value immediately. (bn is set to the last value tested, so you
* can increment bn and continue.)
*
* The "exponent" argument, and following unsigned numbers, are exponents
* for which an inverse is desired, modulo p. For a d to exist such that
* (x^e)^d == x (mod p), then d*e == 1 (mod p-1), so gcd(e,p-1) must be 1.
* The prime returned is constrained to not be congruent to 1 modulo
* any of the zero-terminated list of 16-bit numbers. Note that this list
* should contain all the small prime factors of e. (You'll have to test
* for large prime factors of e elsewhere, but the chances of needing to
* generate another prime are low.)
*
* The list is terminated by a 0, and may be empty.
*/
int
bnPrimeGen(BigNum *bn, unsigned (*randfunc)(unsigned),
int (*f)(void *arg, int c), void *arg, unsigned exponent, ...)
{
int retval;
int modexps = 0;
unsigned short offsets[SHUFFLE];
unsigned i, j;
unsigned p, q, prev;
BigNum a, e;
#ifdef MSDOS
unsigned char *sieve;
#else
unsigned char sieve[SIEVE];
#endif
#ifdef MSDOS
sieve = bniMemAlloc(SIEVE);
if (!sieve)
return -1;
#endif
PGPBoolean isSecure = TRUE;
PGPMemoryMgrRef mgr = bn->mgr;
bnBegin(&a, mgr, isSecure);
bnBegin(&e, mgr, isSecure);
#if 0 /* Self-test (not used for production) */
{
BigNum t;
static unsigned char const prime1[] = {5};
static unsigned char const prime2[] = {7};
static unsigned char const prime3[] = {11};
static unsigned char const prime4[] = {1, 1}; /* 257 */
static unsigned char const prime5[] = {0xFF, 0xF1}; /* 65521 */
static unsigned char const prime6[] = {1, 0, 1}; /* 65537 */
static unsigned char const prime7[] = {1, 0, 3}; /* 65539 */
/* A small prime: 1234567891 */
static unsigned char const prime8[] = {0x49, 0x96, 0x02, 0xD3};
/* A slightly larger prime: 12345678901234567891 */
static unsigned char const prime9[] = {
0xAB, 0x54, 0xA9, 0x8C, 0xEB, 0x1F, 0x0A, 0xD3 };
/*
* No, 123456789012345678901234567891 isn't prime; it's just a
* lucky, easy-to-remember conicidence. (You have to go to
* ...4567907 for a prime.)
*/
static struct {
unsigned char const *prime;
unsigned size;
} const primelist[] = {
{ prime1, sizeof(prime1) },
{ prime2, sizeof(prime2) },
{ prime3, sizeof(prime3) },
{ prime4, sizeof(prime4) },
{ prime5, sizeof(prime5) },
{ prime6, sizeof(prime6) },
{ prime7, sizeof(prime7) },
{ prime8, sizeof(prime8) },
{ prime9, sizeof(prime9) } };
bnBegin(&t);
for (i = 0; i < sizeof(primelist)/sizeof(primelist[0]); i++) {
bnInsertBytes(&t, primelist[i].prime, 0,
primelist[i].size);
bnCopy(&e, &t);
(void)bnSubQ(&e, 1);
bnTwoExpMod(&a, &e, &t);
p = bnBits(&a);
if (p != 1) {
printf(
"Bug: Fermat(2) %u-bit output (1 expected)\n", p);
fputs("Prime = 0x", stdout);
for (j = 0; j < primelist[i].size; j++)
printf("%02X", primelist[i].prime[j]);
putchar('\n');
}
bnSetQ(&a, 3);
bnExpMod(&a, &a, &e, &t);
p = bnBits(&a);
if (p != 1) {
printf(
"Bug: Fermat(3) %u-bit output (1 expected)\n", p);
fputs("Prime = 0x", stdout);
for (j = 0; j < primelist[i].size; j++)
printf("%02X", primelist[i].prime[j]);
putchar('\n');
}
}
bnEnd(&t);
}
#endif
/* First, make sure that bn is odd. */
if ((bnLSWord(bn) & 1) == 0)
(void)bnAddQ(bn, 1);
retry:
/* Then build a sieve starting at bn. */
sieveBuild(sieve, SIEVE, bn, 2, 0);
/* Do the extra exponent sieving */
if (exponent) {
va_list ap;
unsigned t = exponent;
va_start(ap, exponent);
do {
/* The exponent had better be odd! */
pgpAssert(t & 1);
i = bnModQ(bn, t);
/* Find 1-i */
if (i == 0)
i = 1;
else if (--i)
i = t - i;
/* Divide by 2, modulo the exponent */
i = (i & 1) ? i/2 + t/2 + 1 : i/2;
/* Remove all following multiples from the sieve. */
sieveSingle(sieve, SIEVE, i, t);
/* Get the next exponent value */
t = va_arg(ap, unsigned);
} while (t);
va_end(ap);
}
/* Fill up the offsets array with the first SHUFFLE candidates */
i = p = 0;
/* Get first prime */
if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) {
offsets[i++] = p;
p = sieveSearch(sieve, SIEVE, p);
}
/*
* Okay, from this point onwards, p is always the next entry
* from the sieve, that has not been added to the shuffle table,
* and is 0 iff the sieve has been exhausted.
*
* If we want to shuffle, then fill the shuffle table until the
* sieve is exhausted or the table is full.
*/
if (randfunc && p) {
do {
offsets[i++] = p;
p = sieveSearch(sieve, SIEVE, p);
} while (p && i < SHUFFLE);
}
/* Choose a random candidate for experimentation */
prev = 0;
while (i) {
/* Pick a random entry from the shuffle table */
j = randfunc ? randfunc(i) : 0;
q = offsets[j]; /* The entry to use */
/* Replace the entry with some more data, if possible */
if (p) {
offsets[j] = p;
p = sieveSearch(sieve, SIEVE, p);
} else {
offsets[j] = offsets[--i];
offsets[i] = 0;
}
/* Adjust bn to have the right value */
if ((q > prev ? bnAddMult(bn, q-prev, 2)
: bnSubMult(bn, prev-q, 2)) < 0)
goto failed;
prev = q;
/* Now do the Fermat tests */
retval = primeTest(bn, &e, &a, f, arg);
if (retval <= 0)
goto done; /* Success or error */
modexps += retval;
if (f && (retval = f(arg, '.')) < 0)
goto done;
}
/* Ran out of sieve space - increase bn and keep trying. */
if (bnAddMult(bn, SIEVE*8-prev, 2) < 0)
goto failed;
if (f && (retval = f(arg, '/')) < 0)
goto done;
goto retry;
failed:
retval = -1;
done:
bnEnd(&e);
bnEnd(&a);
bniMemWipe(offsets, sizeof(offsets));
#ifdef MSDOS
bniMemFree(sieve, SIEVE);
#else
bniMemWipe(sieve, sizeof(sieve));
#endif
return retval < 0 ? retval : modexps + CONFIRMTESTS;
}
/*
* Similar, but searches forward from the given starting value in steps of
* "step" rather than 1. The step size must be even, and bn must be odd.
* Among other possibilities, this can be used to generate "strong"
* primes, where p-1 has a large prime factor.
*/
int
bnPrimeGenStrong(BigNum *bn, BigNum const *step,
int (*f)(void *arg, int c), void *arg)
{
int retval;
unsigned p, prev;
BigNum a, e;
int modexps = 0;
#ifdef MSDOS
unsigned char *sieve;
#else
unsigned char sieve[SIEVE];
#endif
PGPBoolean isSecure = bn->isSecure;
PGPMemoryMgrRef mgr = bn->mgr;
#ifdef MSDOS
sieve = bniMemAlloc(SIEVE);
if (!sieve)
return -1;
#endif
/* Step must be even and bn must be odd */
pgpAssert((bnLSWord(step) & 1) == 0);
pgpAssert((bnLSWord(bn) & 1) == 1);
bnBegin(&a, mgr, isSecure);
bnBegin(&e, mgr, isSecure);
for (;;) {
if (sieveBuildBig(sieve, SIEVE, bn, step, 0) < 0)
goto failed;
p = prev = 0;
if (sieve[0] & 1 || (p = sieveSearch(sieve, SIEVE, p)) != 0) {
do {
/*
* Adjust bn to have the right value,
* adding (p-prev) * 2*step.
*/
pgpAssert(p >= prev);
/* Compute delta into a */
if (bnMulQ(&a, step, p-prev) < 0)
goto failed;
if (bnAdd(bn, &a) < 0)
goto failed;
prev = p;
retval = primeTest(bn, &e, &a, f, arg);
if (retval <= 0)
goto done; /* Success! */
modexps += retval;
if (f && (retval = f(arg, '.')) < 0)
goto done;
/* And try again */
p = sieveSearch(sieve, SIEVE, p);
} while (p);
}
/* Ran out of sieve space - increase bn and keep trying. */
#if SIEVE*8 == 65536
/* Corner case that will never actually happen */
if (!prev) {
if (bnAdd(bn, step) < 0)
goto failed;
p = 65535;
} else {
p = (unsigned)(SIEVE*8 - prev);
}
#else
p = SIEVE*8 - prev;
#endif
if (bnMulQ(&a, step, p) < 0 || bnAdd(bn, &a) < 0)
goto failed;
if (f && (retval = f(arg, '/')) < 0)
goto done;
} /* for (;;) */
failed:
retval = -1;
done:
bnEnd(&e);
bnEnd(&a);
#ifdef MSDOS
bniMemFree(sieve, SIEVE);
#else
bniMemWipe(sieve, sizeof(sieve));
#endif
return retval < 0 ? retval : modexps + CONFIRMTESTS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -