📄 pgpztrees.c
字号:
DIST_BUFSIZE * sizeof(PGPUInt16), kPGPMemoryMgrFlags_Clear);
if (ctx->d_buf == NULL) {
pgpContextMemFree (cdkContext, ctx);
return NULL;
}
ctx->l_buf = (PGPByte far *)pgpContextMemAlloc (cdkContext,
(LIT_BUFSIZE/2) * 2, kPGPMemoryMgrFlags_Clear);
/* Avoid using the value 64K on 16 bit machines */
if (ctx->l_buf == NULL) {
pgpContextMemFree (cdkContext, ctx->d_buf);
pgpContextMemFree (cdkContext, ctx);
return NULL;
}
/* if (ctx->l_buf == NULL || ctx->d_buf == NULL)
* error("ct_init: out of memory");
*/
#endif
/* Initialize the counts for the first block */
init_block(ctx);
/* The following initializes constant data - it may be skipped */
if (ctx->static_dtree[0].Len != 0) return 0; /* ct_init already called */
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES-1; code++) {
ctx->base_length[code] = length;
for (n = 0; n < (1<<extra_lbits[code]); n++) {
ctx->length_code[length++] = (PGPByte)code;
}
}
ZipAssert (length == 256, "ct_init: length != 256");
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
ctx->length_code[length-1] = (PGPByte)code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0 ; code < 16; code++) {
ctx->base_dist[code] = dist;
for (n = 0; n < (1<<extra_dbits[code]); n++) {
ctx->dist_code[dist++] = (PGPByte)code;
}
}
ZipAssert (dist == 256, "ct_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++) {
ctx->base_dist[code] = dist << 7;
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
ctx->dist_code[256 + dist++] = (PGPByte)code;
}
}
ZipAssert (dist == 256, "ct_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++)
ctx->bl_count[bits] = 0;
n = 0;
while (n <= 143) ctx->static_ltree[n++].Len = 8, ctx->bl_count[8]++;
while (n <= 255) ctx->static_ltree[n++].Len = 9, ctx->bl_count[9]++;
while (n <= 279) ctx->static_ltree[n++].Len = 7, ctx->bl_count[7]++;
while (n <= 287) ctx->static_ltree[n++].Len = 8, ctx->bl_count[8]++;
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
gen_codes(ctx, (ct_data near *)ctx->static_ltree, L_CODES+1);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
ctx->static_dtree[n].Len = 5;
ctx->static_dtree[n].Code = bit_reverse(n, 5);
}
return ctx;
}
void ct_free(ZTreesContext *ctx)
{
PGPContextRef cdkContext;
cdkContext = ctx->cdkContext;
#ifdef DYN_ALLOC
/* Wipe and free buffers */
pgpClearMemory(ctx->d_buf, DIST_BUFSIZE * sizeof(PGPUInt16));
pgpClearMemory(ctx->l_buf, LIT_BUFSIZE);
pgpContextMemFree (cdkContext, ctx->d_buf);
pgpContextMemFree (cdkContext, ctx->l_buf);
#endif
/* Wipe everything else */
pgpClearMemory( ctx, sizeof(*ctx) );
pgpContextMemFree( cdkContext, ctx );
}
/* ===========================================================================
* Initialize a new block.
*/
static void
init_block(ZTreesContext *ctx)
{
int n; /* iterates over tree elements */
/* Initialize the trees. */
for (n = 0; n < L_CODES; n++) ctx->dyn_ltree[n].Freq = 0;
for (n = 0; n < D_CODES; n++) ctx->dyn_dtree[n].Freq = 0;
for (n = 0; n < BL_CODES; n++) ctx->bl_tree[n].Freq = 0;
ctx->dyn_ltree[END_BLOCK].Freq = 1;
ctx->opt_len = ctx->static_len = 0L;
ctx->last_lit = ctx->last_dist = ctx->last_flags = 0;
ctx->flags = 0; ctx->flag_bit = 1;
}
#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */
/* ===========================================================================
* Remove the smallest element from the heap and recreate the heap with
* one less element. Updates heap and heap_len.
*/
#define pqremove(ctx, tree, top) \
{\
top = (ctx)->heap[SMALLEST]; \
(ctx)->heap[SMALLEST] = (ctx)->heap[(ctx)->heap_len--]; \
pqdownheap(ctx, tree, SMALLEST); \
}
/* ===========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
#define smaller(ctx, tree, n, m) \
(tree[n].Freq < tree[m].Freq || \
(tree[n].Freq == tree[m].Freq && (ctx)->depth[n] <= (ctx)->depth[m]))
/* ===========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
static void
pqdownheap(ZTreesContext *ctx, ct_data near *tree, int k)
{
int v = ctx->heap[k];
int j = k << 1; /* left son of k */
int htemp; /* required because of bug in SASC compiler */
while (j <= ctx->heap_len) {
/* Set j to the smallest of the two sons: */
if (j < ctx->heap_len && smaller(ctx, tree, ctx->heap[j+1],
ctx->heap[j])) j++;
/* Exit if v is smaller than both sons */
htemp = ctx->heap[j];
if (smaller(ctx, tree, v, htemp)) break;
/* Exchange v with the smallest son */
ctx->heap[k] = htemp;
k = j;
/* And continue down the tree, setting j to the left son of k */
j <<= 1;
}
ctx->heap[k] = v;
}
/* ===========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
static void
gen_bitlen(ZTreesContext *ctx, tree_desc near *desc)
{
ct_data near *tree = desc->dyn_tree;
int const near *extra = desc->extra_bits;
int base = desc->extra_base;
int max_code = desc->max_code;
int max_length = desc->max_length;
ct_data near *stree = desc->static_tree;
int h; /* heap index */
int n, m; /* iterate over the tree elements */
int bits; /* bit length */
int xbits; /* extra bits */
PGPUInt16 f; /* frequency */
int overflow = 0; /* number of elements with bit length too large */
for (bits = 0; bits <= MAX_BITS; bits++)
ctx->bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[ctx->heap[ctx->heap_max]].Len = 0; /* root of the heap */
for (h = ctx->heap_max+1; h < HEAP_SIZE; h++) {
n = ctx->heap[h];
bits = tree[tree[n].Dad].Len + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n].Len = (PGPUInt16)bits;
/* We overwrite tree[n].Dad which is no longer needed */
if (n > max_code)
continue; /* not a leaf node */
ctx->bl_count[bits]++;
xbits = 0;
if (n >= base)
xbits = extra[n-base];
f = tree[n].Freq;
ctx->opt_len += (PGPUInt32)f * (bits + xbits);
if (stree)
ctx->static_len += (PGPUInt32)f * (stree[n].Len + xbits);
}
if (overflow == 0) return;
Trace((stderr,"\nbit length overflow\n"));
/* This happens for example on obj2 and pic of the Calgary corpus */
/* Find the first bit length which could increase: */
do {
bits = max_length-1;
while (ctx->bl_count[bits] == 0)
bits--;
ctx->bl_count[bits]--; /* move one leaf down the tree */
ctx->bl_count[bits+1] += 2; /* move one overflow item as its brother */
ctx->bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
n = ctx->bl_count[bits];
while (n != 0) {
m = ctx->heap[--h];
if (m > max_code)
continue;
if (tree[m].Len != (unsigned) bits) {
Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
ctx->opt_len += ((long)bits - tree[m].Len) * tree[m].Freq;
tree[m].Len = (PGPUInt16)bits;
}
n--;
}
}
}
/* ===========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
static void
gen_codes(ZTreesContext *ctx, ct_data near *tree, int max_code)
{
PGPUInt16 next_code[MAX_BITS+1]; /* next code value for each bit length */
PGPUInt16 code = 0; /* running code value */
int bits; /* bit index */
int n; /* code index */
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= MAX_BITS; bits++)
next_code[bits] = code = (code + ctx->bl_count[bits-1]) << 1;
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
ZipAssert (code + ctx->bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
"inconsistent bit counts");
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for (n = 0; n <= max_code; n++) {
int len = tree[n].Len;
if (len == 0)
continue;
/* Now reverse the bits */
tree[n].Code = bit_reverse(next_code[len]++, len);
Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
}
}
/* ===========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
static void
build_tree(ZTreesContext *ctx, tree_desc near *desc)
{
ct_data near *tree = desc->dyn_tree;
ct_data near *stree = desc->static_tree;
int elems = desc->elems;
int n, m; /* iterate over heap elements */
int max_code = -1; /* largest code with non zero frequency */
int node = elems; /* next internal node of the tree */
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
ctx->heap_len = 0, ctx->heap_max = HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n].Freq != 0) {
ctx->heap[++ctx->heap_len] = max_code = n;
ctx->depth[n] = 0;
} else {
tree[n].Len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (ctx->heap_len < 2) {
n = ctx->heap[++ctx->heap_len] = (max_code < 2 ? ++max_code : 0);
tree[n].Freq = 1;
ctx->depth[n] = 0;
ctx->opt_len--;
if (stree)
ctx->static_len -= stree[n].Len;
/* n is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = ctx->heap_len/2; n >= 1; n--)
pqdownheap(ctx, tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
pqremove(ctx, tree, n); /* n = node of least frequency */
m = ctx->heap[SMALLEST]; /* m = node of next least frequency */
ctx->heap[--ctx->heap_max] = n; /* keep the nodes sorted by frequency*/
ctx->heap[--ctx->heap_max] = m;
/* Create a new node father of n and m */
tree[node].Freq = tree[n].Freq + tree[m].Freq;
ctx->depth[node] = (PGPByte)(MAX(ctx->depth[n], ctx->depth[m]) + 1);
tree[n].Dad = tree[m].Dad = (PGPUInt16)node;
#ifdef DUMP_BL_TREE
if (tree == ctx->bl_tree)
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
#endif
/* and insert the new node in the heap */
ctx->heap[SMALLEST] = node++;
pqdownheap(ctx, tree, SMALLEST);
} while (ctx->heap_len >= 2);
ctx->heap[--ctx->heap_max] = ctx->heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(ctx, desc);
/* The field len is now set, we can generate the bit codes */
gen_codes (ctx, tree, max_code);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
static void
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -