📄 aimagestatistics.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <float.h>
#include "CvTest.h"
static char* funcs[] =
{
"cvCountNonZero",
"cvSumPixels",
"cvMinMaxLoc, cvMinMaxLocMask",
"cvMean, cvMeanMask",
"cvMean_StdDev, cvMean_StdDevMask",
};
static char *test_desc = "Comparing with the simple algorithm";
static const double ATS_SUCCESS_ERROR_LEVEL_FLT = 3e-5;
#define IMGSTAT_COUNT_NON_ZERO 0
#define IMGSTAT_SUM_PIXELS 1
#define IMGSTAT_MIN_MAX_LOC 2
#define IMGSTAT_MEAN 3
#define IMGSTAT_MEAN_STDDEV 4
/* actual parameters */
static int min_img_size, max_img_size;
static int img_size_delta_type, img_size_delta;
static int base_iters;
/* which tests have to run */
static int fn_l = 0, fn_h = ATS_DIM(funcs)-1,
dt_l = 0, dt_h = 2,
ch_l = 0, ch_h = 1;
static int init_img_stat_params = 0;
static const int mask_depth = IPL_DEPTH_8U;
static const int img8u_range = 255;
static const int img8s_range = 128;
static const float img32f_range = 1000.f;
static const int img32f_bits = 23;
static const int mask_mask = 0x80;
static double rel_err( double a, double b )
{
return fabs(a - b)/(fabs(a) + 1e-10);
}
static double rel_err2( double a, double b, double abs_a )
{
return fabs(a - b)/(abs_a + 1e-10);
}
static void read_img_stat_params( void )
{
if( !init_img_stat_params )
{
int func, data_types, channels;
/* Determine which tests are needed to run */
trsCaseRead( &func, "/a/cnz/sum/mml/mn/md", "a",
"Function type: \n"
"a - all\n"
"cnz - CountNonZero\n"
"sum - SumPixels\n"
"mml - MinMaxLoc\n"
"mn - Mean\n"
"md - Mean_StdDev\n" );
if( func != 0 ) fn_l = fn_h = func - 1;
trsCaseRead( &data_types,"/a/8u/8s/32f", "a",
"a - all, 8u - unsigned char, 8s - signed char, 32f - float" );
if( data_types != 0 ) dt_l = dt_h = data_types - 1;
trsCaseRead( &channels, "/a/1/3", "a", "a - all, 1 - single channel, 3 - three channels" );
if( channels != 0 ) ch_l = ch_h = channels - 1;
/* read tests params */
trsiRead( &min_img_size, "1", "Minimal width or height of image" );
trsiRead( &max_img_size, "1000", "Maximal width or height of image" );
trsCaseRead( &img_size_delta_type,"/a/m", "m", "a - add, m - multiply" );
trsiRead( &img_size_delta, "3", "Image size step(factor)" );
trsiRead( &base_iters, "1000", "Base number of iterations" );
init_img_stat_params = 1;
}
}
/* ///////////////////// count_non_zero_test ///////////////////////// */
static int count_non_zero_test( void* arg )
{
const int success_error_level = 0;
static const int img8u_range = 3;
static const int img8s_range = 3;
static const float img32f_range = 10.f;
static const int img32f_bits = 4;
int param = (int)arg;
int depth = param/2;
int channels = (param & 1);
int seed = atsGetSeed();
/* position where the maximum error occured */
int merr_w = 0, merr_h = 0, merr_iter = 0, merr_c = 0;
/* test parameters */
int w = 0, h = 0, i = 0, c = 0;
double max_err = 0.;
//int code = TRS_OK;
IplROI roi;
IplImage *img, *img2;
AtsRandState rng_state;
atsRandInit( &rng_state, 0, 1, seed );
read_img_stat_params();
if( !(ATS_RANGE( IMGSTAT_COUNT_NON_ZERO, fn_l, fn_h+1 ) &&
ATS_RANGE( depth, dt_l, dt_h+1 ) &&
ATS_RANGE( channels, ch_l, ch_h+1 ))) return TRS_UNDEF;
depth = depth == 2 ? IPL_DEPTH_32F : depth == 1 ? IPL_DEPTH_8S : IPL_DEPTH_8U;
channels = channels*2 + 1;
img = atsCreateImage( max_img_size, max_img_size, depth, channels, 0 );
img2 = atsCreateImage( max_img_size, max_img_size, IPL_DEPTH_32F, channels, 0 );
roi.coi = 0;
roi.xOffset = roi.yOffset = 0;
img->roi = img2->roi = &roi;
for( h = min_img_size; h <= max_img_size; )
{
for( w = min_img_size; w <= max_img_size; )
{
int denom = (w - min_img_size + 1)*(h - min_img_size + 1)*channels;
int iters = (base_iters*2 + denom)/(2*denom);
roi.width = w;
roi.height = h;
if( iters < 1 ) iters = 1;
for( i = 0; i < iters; i++ )
{
int etalon_result[3];
switch( depth )
{
case IPL_DEPTH_8U:
atsRandSetBounds( &rng_state, 0, img8u_range );
break;
case IPL_DEPTH_8S:
atsRandSetBounds( &rng_state, -img8s_range, img8s_range );
break;
case IPL_DEPTH_32F:
atsRandSetBounds( &rng_state, -img32f_range, img32f_range );
atsRandSetFloatBits( &rng_state, img32f_bits );
break;
}
roi.coi = 0;
atsFillRandomImageEx( img, &rng_state );
if( depth != IPL_DEPTH_32F ) atsConvert( img, img2 );
for( c = 1; c <= channels; c++ )
{
roi.coi = c;
atsCalcImageStatistics(
depth == IPL_DEPTH_32F ? img : img2, 0,
0, 0, /* min & max vals */
0, 0, /* min & max locs */
&etalon_result[c-1], /* non_zero */
0, /* sum */
0, 0, /* mean & stddev */
0, 0, 0, 0 ); /* c_norm, l1_norm, l2_norm */
}
for( c = 1; c <= channels; c++ )
{
double err0;
int result;
roi.coi = c;
/* //// ROI version /////// */
result = cvCountNonZero( img );
err0 = fabs( result - etalon_result[c-1] );
if( err0 > max_err )
{
merr_w = w;
merr_h = h;
merr_iter = i;
merr_c = c;
max_err = err0;
if( max_err > success_error_level ) goto test_exit;
}
}
}
ATS_INCREASE( w, img_size_delta_type, img_size_delta );
} /* end of the loop by w */
ATS_INCREASE( h, img_size_delta_type, img_size_delta );
} /* end of the loop by h */
test_exit:
img->roi = img2->roi = 0;
atsReleaseImage( img );
atsReleaseImage( img2 );
//if( code == TRS_OK )
{
trsWrite( ATS_LST, "Max err is %g at w = %d, h = %d, "
"iter = %d, c = %d, seed = %08x",
max_err, merr_w, merr_h, merr_iter, merr_c, seed );
return max_err <= success_error_level ?
trsResult( TRS_OK, "No errors" ) :
trsResult( TRS_FAIL, "Bad accuracy" );
}
/*else
{
trsWrite( ATS_LST, "Fatal error at w = %d, h = %d, "
"iter = %d, c = %d, seed = %08x",
w, h, i, c, seed );
return trsResult( TRS_FAIL, "Function returns error code" );
}*/
}
/* ///////////////////// sum_pixels_test ///////////////////////// */
static int sum_pixels_test( void* arg )
{
double success_error_level = 0;
int param = (int)arg;
int depth = param/2;
int channels = (param & 1);
int seed = atsGetSeed();
/* position where the maximum error occured */
int merr_w = 0, merr_h = 0, merr_iter = 0, merr_c = 0;
/* test parameters */
int w = 0, h = 0, i = 0, c = 0;
double max_err = 0.;
//int code = TRS_OK;
IplROI roi;
IplImage *img, *img2;
AtsRandState rng_state;
atsRandInit( &rng_state, 0, 1, seed );
read_img_stat_params();
if( !(ATS_RANGE( IMGSTAT_SUM_PIXELS, fn_l, fn_h+1 ) &&
ATS_RANGE( depth, dt_l, dt_h+1 ) &&
ATS_RANGE( channels, ch_l, ch_h+1 ))) return TRS_UNDEF;
depth = depth == 2 ? IPL_DEPTH_32F : depth == 1 ? IPL_DEPTH_8S : IPL_DEPTH_8U;
channels = channels*2 + 1;
img = atsCreateImage( max_img_size, max_img_size, depth, channels, 0 );
img2 = atsCreateImage( max_img_size, max_img_size, IPL_DEPTH_32F, channels, 0 );
roi.coi = 0;
roi.xOffset = roi.yOffset = 0;
img->roi = img2->roi = &roi;
if( depth == IPL_DEPTH_32F ) success_error_level = ATS_SUCCESS_ERROR_LEVEL_FLT;
for( h = min_img_size; h <= max_img_size; )
{
for( w = min_img_size; w <= max_img_size; )
{
int denom = (w - min_img_size + 1)*(h - min_img_size + 1)*channels;
int iters = (base_iters*2 + denom)/(2*denom);
roi.width = w;
roi.height = h;
if( iters < 1 ) iters = 1;
for( i = 0; i < iters; i++ )
{
double etalon_result[3];
double etalon_norm[3];
switch( depth )
{
case IPL_DEPTH_8U:
atsRandSetBounds( &rng_state, 0, img8u_range );
break;
case IPL_DEPTH_8S:
atsRandSetBounds( &rng_state, -img8s_range, img8s_range );
break;
case IPL_DEPTH_32F:
atsRandSetBounds( &rng_state, -img32f_range, img32f_range );
atsRandSetFloatBits( &rng_state, img32f_bits );
break;
}
roi.coi = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -