📄 amathutils.cpp
字号:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "CvTest.h"
#include <float.h>
/* Testing parameters */
static char* func_names[] =
{
"cvbFastArctan",
"cvbSqrt",
"cvbInvSqrt",
"cvbCartToPolar",
"cvbReciprocal",
"cvbFastLog",
"cvbFastExp"
};
static char* test_desc = "Measure mathematical functions accuracy";
static double angle_step;
static double r_factor, r_delta, r_limit;
static int exp_step, mant_step;
static int log_exp_step;
static int64 log_mant_step;
static int exp_exp_max, exp_mant_step;
static int init_atan_params = 0;
static int init_sqrt_params = 0;
static int init_log_params = 0;
static int init_exp_params = 0;
static void read_atan_params( void )
{
if( !init_atan_params )
{
/* Reading test-parameters */
trsdRead( &r_factor, "3", "Radius multiplier" );
trsdRead( &r_delta, ".01", "Radius increment" );
trsdRead( &r_limit,"100000", "Radius limit" );
trsdRead( &angle_step, "0.01", "Angle step (degree)" );
init_atan_params = 1;
}
}
static void read_sqrt_params( void )
{
if( !init_sqrt_params )
{
/* Reading test-parameters */
trsiRead( &mant_step, "16", "Mantissa step" );
trsiRead( &exp_step, "80", "Exponent step" );
init_sqrt_params = 1;
}
}
static void read_log_params( void )
{
if( !init_log_params )
{
int log_mant_step_scale = 0;
/* Reading test-parameters */
trsiRead( &log_mant_step_scale, "40", "Mantissa step" );
log_mant_step = (int64)1 << log_mant_step_scale;
trsiRead( &log_exp_step, "40", "Exponent step" );
init_log_params = 1;
}
}
static void read_exp_params( void )
{
if( !init_exp_params )
{
/* Reading test-parameters */
trsiRead( &exp_mant_step, "1024", "Mantissa step" );
trsiRead( &exp_exp_max, "12", "Maximal exponent range" );
init_exp_params = 1;
}
}
static int test_arctan( void )
{
const double success_error_level = 4e-1;
/* position where the maximum error occured */
double merr_angle = 0,
merr_bangle = 0,
merr_y = 0, merr_x = 0,
merr_by = 0, merr_bx = 0;
unsigned seed = atsGetSeed();
/* test parameters */
double angle = 0, radius = 0;
double max_err = 0.; /* maximum scalar error */
double max_berr = 0.; /* maximum vector error */
int code = 0;
int i, j, k;
int phi = 0, r = 0, total = 0;
float* data_y = 0;
float* data_x = 0;
float* angles = 0;
float* result = 0;
AtsRandState state;
read_atan_params();
for( angle = 0; angle <= 360; angle += angle_step, phi++ );
for( radius = 0; radius <= r_limit; radius = radius*r_factor + r_delta, r++ );
total = phi*r;
data_y = (float*)icvAlloc( total*sizeof(float) );
data_x = (float*)icvAlloc( total*sizeof(float) );
angles = (float*)icvAlloc( total*sizeof(float) );
result = (float*)icvAlloc( total*sizeof(float) );
/* scalar function test */
for( i = 0, k = 0, radius = 0; i < r; i++, radius = radius*r_factor + r_delta )
{
for( j = 0, angle = 0; j < phi; j++, angle += angle_step, k++ )
{
double a = angle * (IPL_PI/180);
double x = radius* cos( a );
double y = radius* sin( a );
double angle1 = x != 0 || y != 0 ? angle : 0;
/*a = ippiFastArctan32f( (float)y, (float)x );
diff = atsCompareAngles( a, angle1 );
if( diff > max_err )
{
max_err = diff;
merr_angle = angle1;
merr_y = y;
merr_x = x;
if( max_err > success_error_level )
{
code = -1;
goto test_exit;
}
}*/
data_y[k] = (float)y;
data_x[k] = (float)x;
angles[k] = (float)angle1;
}
}
/* vector function test */
/* shuffle data */
atsRandInit( &state, 0, total, seed );
for( i = 0; i < total/2; i++ )
{
int i0 = atsRand32s( &state );
int i1 = atsRand32s( &state );
float temp;
ATS_SWAP( data_y[i0], data_y[i1], temp );
ATS_SWAP( data_x[i0], data_x[i1], temp );
ATS_SWAP( angles[i0], angles[i1], temp );
}
cvbFastArctan( data_y, data_x, result, total );
for( i = 0; i < total; i++ )
{
double err = atsCompareAngles( result[i], angles[i] );
if( err > max_berr )
{
max_berr = err;
merr_bangle = angles[i];
merr_by = data_y[i];
merr_bx = data_x[i];
if( max_berr > success_error_level )
{
code = -3;
goto test_exit;
}
}
}
test_exit:
icvFree( &data_y );
icvFree( &data_x );
icvFree( &angles );
icvFree( &result );
if( code != -2 )
{
trsWrite( ATS_LST, "max scalar err: %g at angle %g, y %g, x %g\n"
"max vector err: %g at angle %g, y %g, x %g, seed %08x",
max_err, merr_angle, merr_y, merr_x,
max_berr, merr_bangle, merr_by, merr_bx, seed );
return max_err <= success_error_level &&
max_berr <= success_error_level ?
trsResult( TRS_OK, "No errors" ) :
max_err > success_error_level ?
trsResult( TRS_FAIL, "Bad scalar accuracy" ) :
trsResult( TRS_FAIL, "Bad vector accuracy" ) ;
}
else
{
return trsResult( TRS_FAIL, "Vector function returns error code" );
}
}
static int test_sqrt( void* arg )
{
const double success_error_level = 1e-5;
const int exp_max = 255;
const int mbits = 23;
int inv = (int)arg;
/* position where the maximum error occured */
double merr_x = 0, merr_bx = 0;
unsigned seed = atsGetSeed();
/* test parameters */
int exp = 0, mant = 0;
double max_err = 0.; /* maximum scalar error */
double max_berr = 0.; /* maximum vector error */
int code = 0;
int k;
int i = 0, m = 0, e = 0, total = 0;
float* data_x = 0;
float* std_sqrt = 0;
float* result = 0;
AtsRandState state;
read_sqrt_params();
for( mant = 0; mant < (1<<mbits); mant += mant_step, m++ );
for( exp = inv; exp < exp_max; exp += exp_step, e++ );
total = m*e;
data_x = (float*)icvAlloc( total*sizeof(float) );
std_sqrt = (float*)icvAlloc( total*sizeof(float) );
result = (float*)icvAlloc( total*sizeof(float) );
/* scalar function test */
for( exp = inv, k = 0; exp < exp_max; exp += exp_step )
{
for( mant = 0; mant < (1<<mbits); mant += mant_step, k++ )
{
float x;
float std, fast;
double err;
*((unsigned*)&x) = (exp << mbits) | mant;
if( !inv )
{
std = (float)sqrt(x);
fast = cvSqrt(x);
}
else
{
std = (float)(1./sqrt(x));
fast = cvInvSqrt(x);
}
err = fabs( std - fast )/(std + 1e-10);
if( err > max_err )
{
max_err = err;
merr_x = x;
if( max_err > success_error_level )
{
code = -1;
goto test_exit;
}
}
data_x[k] = x;
std_sqrt[k] = std;
}
}
/* vector function test */
/* shuffle data */
atsRandInit( &state, 0, total, seed );
for( i = 0; i < total/2; i++ )
{
int i0 = atsRand32s( &state );
int i1 = atsRand32s( &state );
float temp;
ATS_SWAP( data_x[i0], data_x[i1], temp );
ATS_SWAP( std_sqrt[i0], std_sqrt[i1], temp );
}
if( inv )
cvbInvSqrt( data_x, result, total );
else
cvbSqrt( data_x, result, total );
for( i = 0; i < total; i++ )
{
double err = fabs(result[i] - std_sqrt[i])/(std_sqrt[i] + 1e-10);
if( err > max_berr )
{
max_berr = err;
merr_bx = data_x[i];
if( max_berr > success_error_level )
{
code = -3;
goto test_exit;
}
}
}
test_exit:
icvFree( &data_x );
icvFree( &std_sqrt );
icvFree( &result );
if( code != -2 )
{
trsWrite( ATS_LST, "max scalar err: %g at x = %g\n"
"max vector err: %g at x = %g, seed %08x",
max_err, merr_x,
max_berr, merr_bx, seed );
return max_err <= success_error_level &&
max_berr <= success_error_level ?
trsResult( TRS_OK, "No errors" ) :
max_err > success_error_level ?
trsResult( TRS_FAIL, "Bad scalar accuracy" ) :
trsResult( TRS_FAIL, "Bad vector accuracy" ) ;
}
else
{
return trsResult( TRS_FAIL, "Vector function returns error code" );
}
}
static int test_cart_to_polar( void )
{
const double success_mag_error_level = 1e-5,
success_phase_error_level = 4e-1;
/* position where the maximum error occured */
double mm_err_y = 0, mm_err_x = 0,
mm_err_by = 0, mm_err_bx = 0;
double mp_err_y = 0, mp_err_x = 0,
mp_err_by = 0, mp_err_bx = 0;
unsigned seed = atsGetSeed();
/* test parameters */
double angle = 0, radius = 0;
double max_mag_err = 0.; /* maximum scalar magnitude error */
double max_mag_berr = 0.; /* maximum vector magnitude error */
double max_phase_err = 0.; /* maximum scalar phase error */
double max_phase_berr = 0.; /* maximum vector phase error */
int code = 0;
int i, j, k;
int phi = 0, r = 0, total = 0;
float* data_y = 0;
float* data_x = 0;
float* std_phase = 0;
float* std_mag = 0;
float* fast_phase = 0;
float* fast_mag = 0;
AtsRandState state;
read_atan_params();
for( angle = 0; angle <= 360; angle += angle_step, phi++ );
for( radius = 0; radius <= r_limit; radius = radius*r_factor + r_delta, r++ );
total = phi*r;
data_y = (float*)icvAlloc( total*sizeof(float) );
data_x = (float*)icvAlloc( total*sizeof(float) );
std_phase = (float*)icvAlloc( total*sizeof(float) );
std_mag = (float*)icvAlloc( total*sizeof(float) );
fast_phase = (float*)icvAlloc( total*sizeof(float) );
fast_mag = (float*)icvAlloc( total*sizeof(float) );
/* scalar function test */
for( i = 0, k = 0, radius = 0; i < r; i++, radius = radius*r_factor + r_delta )
{
for( j = 0, angle = 0; j < phi; j++, angle += angle_step, k++ )
{
double a = angle * (IPL_PI/180);
double x = radius* cos( a );
double y = radius* sin( a );
double angle1 = x != 0 || y != 0 ? angle : 0;
/*
cvCartToPolar32f( (float)x, (float)y, &fm, &fp );
err = atsCompareAngles( fp, angle1 );
if( err > max_phase_err )
{
max_phase_err = err;
mp_err_y = y;
mp_err_x = x;
if( max_phase_err > success_phase_error_level )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -