📄 lms.m
字号:
function D = LMS(train_features, train_targets, params, region)
% Classify using the least means square algorithm
% Inputs:
% features - Train features
% targets - Train targets
% param - [Maximum iteration Theta (Convergence criterion), Convergence rate]
% region - Decision region vector: [-x x -y y number_of_points]
%
% Outputs
% D - Decision sufrace
[c, n] = size(train_features);
[Max_iter, theta, eta] = process_params(params);
y = [train_features ; ones(1,n)];
train_zero = find(train_targets == 0);
%Preprocessing
processed_features = y;
processed_features(:,train_zero) = -processed_features(:,train_zero);
b = 2*train_targets - 1;
%Initial weights
a = sum(processed_features')';
iter = 0;
k = 0;
update = 1e3;
while ((sum(abs(update)) > theta) & (iter < Max_iter))
iter = iter + 1;
%k <- (k+1) mod n
k = mod(k+1,n);
if (k == 0),
k = n;
end
% a <- a + eta*(b-a'*Yk)*Yk'
update = eta*(b(k) - a'*y(:,k))'*y(:,k);
a = a + update;
end
if (iter == Max_iter),
disp(['Maximum iteration (' num2str(Max_iter) ') reached']);
else
disp(['Did ' num2str(iter) ' iterations'])
end
%Find decision region
N = region(5);
x = ones(N,1) * linspace (region(1),region(2),N);
y = linspace (region(3),region(4),N)' * ones(1,N);
D = (a(1).*x + a(2).*y + a(c+1)> 0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -