📄 mem.v
字号:
//======================================================
// Aquarius Project
// SuperH-2 ISA Compatible RISC CPU
//------------------------------------------------------
// Module : Memory Access Unit
//------------------------------------------------------
// File : mem.v
// Library : none
// Description : Memory Access Unit in CPU.
// Simulator : Icarus Verilog (Cygwin)
// Synthesizer : Xilinx XST (Windows XP)
// Author : Thorn Aitch
//------------------------------------------------------
// Revision Number : 1
// Date of Change : 31st March 2002
// Creator : Thorn Aitch
// Description : Initial Design
//------------------------------------------------------
// Revision Number : 2
// Date of Change : 7th April 2002
// Modifier : Thorn Aitch
// Description : adopt WISHBONE
//------------------------------------------------------
// Revision Number : 3
// Date of Change : 30th April 2003
// Modifier : Thorn Aitch
// Description : Release Version 1.0
//------------------------------------------------------
// Revision Number : 4
// Date of Change : 10th December 2003
// Modifier : Thorn Aitch
// Description : Release Version 1.1
// Inhibit substitution of "x"
// except for defalut statement whose
// case describes all logic spaces.
//======================================================
// Copyright (C) 2002-2003, Thorn Aitch
//
// Designs can be altered while keeping list of
// modifications "the same as in GNU" No money can
// be earned by selling the designs themselves, but
// anyone can get money by selling the implementation
// of the design, such as ICs based on some cores,
// boards based on some schematics or Layouts, and
// even GUI interfaces to text mode drivers.
// "The same as GPL SW" Any update to the design
// should be documented and returned to the design.
// Any derivative work based on the IP should be free
// under OpenIP License. Derivative work means any
// update, change or improvement on the design.
// Any work based on the design can be either made
// free under OpenIP license or protected by any other
// license. Work based on the design means any work uses
// the OpenIP Licensed core as a building black without
// changing anything on it with any other blocks to
// produce larger design. There is NO WARRANTY on the
// functionality or performance of the design on the
// real hardware implementation.
// On the other hand, the SuperH-2 ISA (Instruction Set
// Architecture) executed by Aquarius is rigidly
// the property of Renesas Corp. Then you have all
// responsibility to judge if there are not any
// infringements to Renesas's rights regarding your
// Aquarius adoption into your design.
// By adopting Aquarius, the user assumes all
// responsibility for its use.
// This project may cause any damages around you, for
// example, loss of properties, data, money, profits,
// life, or business etc. By adopting this source,
// the user assumes all responsibility for its use.
//======================================================
`include "timescale.v"
`include "defines.v"
//*********************************
// Memory Access Unit Specification
//*********************************
// The Memory Access Unit handles memory access
// that is instruction fetch and data read/write.
// Also should detect address error exception.
//-------------------
// WISHBONE DATASHEET
//-------------------
// Based on the WISHBONE Specification Revision : B.1
// See http://www.opencores.org/
//
// CPU is defined as MASTER module.
//
//(1)Signal Names
// CLK_I : clock input
// RST_I : reset input
// CYC_O : show bus cycle or read-modify-write cycle
// STB_O : strobe
// ACK_I : bus acknowledge
// ADR_O[31:0] : address output
// DAT_I[31:0] : data input (Read data)
// DAT_O[31:0] : data output (Write data)
// WE_O : read(0)/write(1)
// SEL_O[3:0] : valid data position
// TAG0_I : Instruction Fetch Width(=IF_WIDTH)
//
//(2)Data Organization
// Nomenclature : 8bit
// Big Endian Only
// Terminology : DWORD(32bit) means "Long Word" as SuperH's term.
// WORD(16bit) and Byte(8bit) have same meanings.
//
// [External data bus alignment]
// A1 A0
// READ LONG ** |-HH-|-HL-|-LH-|-LL-|
// READ WORD 0* |--H-|--L-|****|****|
// READ WORD 1* |****|****|--H-|--L-|
// READ BYTE 00 |--B-|****|****|****|
// READ BYTE 01 |****|--B-|****|****|
// READ BYTE 10 |****|****|--B-|****|
// READ BYTE 11 |****|****|****|--B-|
// WRITE LOMG ** |-HH-|-HL-|-LH-|-LL-|
// WRITE WORD ** |--H-|--L-|--H-|--L-|
// WRITE BYTE ** |--B-|--B-|--B-|--B-|
//
// FETCH from LONG space ** |-HH-|-HL-|-LH-|-LL-|
// FETCH from WORD space 0* |--H-|--L-|****|****|
// FETCH from WORD space 1* |****|****|--H-|--L-|
//--------------
// State Machine
//--------------
// [State Definition]
// S0 `S_IDLE :idle
// S1 `S_IFEX :external fetch
// S2 `S_MAEX :external data access
// S3 `S_MAEX_IFPD :external data access, pending fetch
// S4 `S_IDLE_IFKP :idle, keeping lower un-decoded instruction
// S5 `S_IFIN :internal fetch from just keeping one
// S6 `S_MAEX_IFKP :extenal data access, keeping lower un-decoded instruction
// S7 `S_MAEX_IFIN :external data access and do internal fetch from just keeping
// ---
// [Internal Signal]
// IF_KEEP : fetching from "long boundary" and IF_WIDTH=1
// IF_FORCE : IF_JP=1 or next fetch address is from "long boundary"
// ---
// [State Transition]
// S0 -> S0 no event
// S0 -> S1 by fetch request
// S0 -> S2 by data access request
// S0 -> S3 by both fetch request and data access request
// S0 -> S4 n/a
// S0 -> S5 n/a
// S0 -> S6 n/a
// S0 -> S7 n/a
// ---
// S1 -> S0 no event; IF_KEEP=0
// S1 -> S1 by fetch request; IF_FORCE=1 or IF_KEEP=0
// S1 -> S2 by data access request; IF_KEEP=0
// S1 -> S3 by both fetch and data access request; IF_KEEP=0
// S1 -> S4 no event; IF_KEEP=1
// S1 -> S5 by fetch request; IF_FORCE=0 and IF_KEEP=1
// S1 -> S6 by data access request; IF_KEEP=1
// S1 -> S7 by both fetch and data access request; IF_KEEP=1
// ---
// S2 -> S0 no event
// S2 -> S1 by fetch request
// S2 -> S2 by data access request
// S2 -> S3 by both fetch request and data access request
// S2 -> S4 n/a
// S2 -> S5 n/a
// S2 -> S6 n/a
// S2 -> S7 n/a
// ---
// S3 -> S0 n/a
// S3 -> S1 always
// S3 -> S2 n/a
// S3 -> S3 n/a
// S3 -> S4 n/a
// S3 -> S5 n/a
// S3 -> S6 n/a
// S3 -> S7 n/a
// ---
// S4 -> S0 n/a
// S4 -> S1 by fetch request; IF_FORCE=1
// S4 -> S2 n/a
// S4 -> S3 by both fetch request and data access request; IF_FORCE=1
// S4 -> S4 no event
// S4 -> S5 by fetch request; IF_FORCE=0
// S4 -> S6 by data access request
// S4 -> S7 by both fetch request and data access request; IF_FORCE=0
// ---
// S5 -> S0 no event
// S5 -> S1 by fetch request
// S5 -> S2 by data access request
// S5 -> S3 by both fetch request and data access request
// S5 -> S4 n/a
// S5 -> S5 n/a
// S5 -> S6 n/a
// S5 -> S7 n/a
// ---
// S6 -> S0 n/a
// S6 -> S1 by fetch request; IF_FORCE=1
// S6 -> S2 n/a
// S6 -> S3 by both fetch request and data access request; IF_FORCE=1
// S6 -> S4 no event
// S6 -> S5 by fetch request; IF_FORCE=0
// S6 -> S6 by data access request
// S6 -> S7 by both fetch request and data access request; IF_FORCE=0
// ---
// S7 -> S0 no event
// S7 -> S1 by fetch request
// S7 -> S2 by data access request
// S7 -> S3 by both fetch request and data access request
// S7 -> S4 n/a
// S7 -> S5 n/a
// S7 -> S6 n/a
// S7 -> S7 n/a
// ---
//-----------------------------------------
// Memory Access Controller Basic Operation
//-----------------------------------------
// [Example]
// | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipe D E M W D D E M M
// D D - E D - E
// F D D D
// F F
// IF_issue 0 F F-F(*2) F-F(*3)
// MA_issue 0 M M M
// IF_stall 1 0
// (other_stall) 1 0
// bus cycle B B B B B B
// address out A A A A
// write data W W
// xxDR R(*1) R R R
// (*1:should forward to next EX)
// (*2:load destination register contention)
// (*3:IF-MA contention)
//*************************************************
// Module Definition
//*************************************************
module mem(
// system signal
CLK, RST,
// WISHBONE external bus signal
CYC, STB, ACK,
ADR, DATI, DATO,
WE, SEL,
IF_WIDTH,
// pipeline slot edge
SLOT,
// instruction fetch control
IF_ISSUE, IF_JP, IF_AD,
IF_DR, IF_BUS, IF_STALL,
// data access control
MA_ISSUE, KEEP_CYC, MA_WR, MA_SZ,
MA_AD, MA_DW, MA_DR
);
//-------------------
// Module I/O Signals
//-------------------
// (WISHBONE)
input CLK; // clock
input RST; // reset
output CYC; // cycle output
output STB; // strobe
input ACK; // external memory ready
output [31:0] ADR; // external address
input [31:0] DATI; // external data read bus
output [31:0] DATO; // external data write bus
output WE; // external write/read
output [3:0] SEL; // external valid data position
input IF_WIDTH; // external fetch space width (IF_WIDTH)
// (To/From other blocks)
output SLOT; // pipeline slot edge
input IF_ISSUE; // fetch request
input IF_JP; // fetch caused by jump
input [31:0] IF_AD; // fetch address
output [15:0] IF_DR; // fetched instruction
output IF_BUS; // fetch access done to extenal bus
output IF_STALL; // fetch and memory access contention
input MA_ISSUE; // memory access request
input KEEP_CYC; // request read-modify-write (To be issued on READ-CYC to keep CYC_O on)
input MA_WR; // memory access kind : Write(1)/Read(0)
input [1:0] MA_SZ; // memory access size : 00 byte, 01 word, 10 long, 11 inhibitted
input [31:0] MA_AD; // memory access address
input [31:0] MA_DW; // memory write data
output [31:0] MA_DR; // memory read data
//-----------------
// Internal Signals
//-----------------
reg CYC;
reg STB;
reg [31:0] ADR;
reg [31:0] DATO;
reg WE;
reg [3:0] SEL;
reg [31:0] ADR_PREV; // previous ADR to be latched
reg [31:0] DATO_PREV; // previous DATO to be latched
reg CYC_PREV, NEXT_KEEP_CYC; // previous CYC to be latched, keep CYC assertion
reg [3:0] SEL_PREV; // previous SEL to be latched
reg [15:0] IF_DR; // output to decoder
reg [31:0] IF_DR_PREV;// directly latched DATI for instruction
reg [31:0] MA_DR; // output to datapath (sign extended)
reg [31:0] MA_DR_PREV;// directly latched DATI for data
reg IF_BUS; // a instruction in lower 16bit of long size fetched instructions(32bit)
reg IF_STALL;
reg [15:0] IF_BUF; // buffer to keep the lower 16bit of previous long fetch
reg IF_KEEP; // fetching was from "long boundary" AND IF_WIDTH=1
reg IF_FORCE; // IF_JP=1 or next fetch address is from "long boundary"
reg [2:0] STATE; // state
reg [2:0] NEXT_STATE; // next state
reg [1:0] ACCESS_SZ; // current data access size
reg NXTBUS; // next state is exernal bus
reg MEMEND; // finish memory cycle or no memory cycle
reg MEMACK; // memory control unit can accept next memory request
reg [1:0] MA_ACCESS_SZ; // latched ACCESS_SZ to extend sign bit of MA_DR output
reg [1:0] MA_ADR; // latched lower 2bit of ADR to extend sign bit of MA_DR output
reg [2:0] IF_STATE; // latched STATE to make IF_DR from IF_DR_PREV
reg IF_ADR1; // latched ADR[1] to make IF_DR from IF_DR_PREV
reg [15:0] IF_IF_BUF; // latched IF_BUF to make IF_DR from IF_DR_PREV
wire SLOT; // pipeline slot edge (= MEMACK)
integer i;
//-----------------
// Make signal SLOT
//-----------------
assign SLOT = MEMACK;
//-----------------------------------------------------------------------
// Make MEMACK : shows memory control unit can accept next memory request
//-----------------------------------------------------------------------
// MEMACK = memory controller can accept next request (not equal ACK),
// and if memory controller is generating external bus cycle now,
// MEMACK confirms current bus cycle will be finished in this clock cycle.
// MEMEND = finish memory cycle or no memory cycle
// NXTBUS = begin memory cycle (next cycle is external bus)
// ACK = shows only "bus cycle finished"
always @(NEXT_STATE or MEMEND) begin
case (NEXT_STATE)
//`S_MAEX_IFPD : MEMACK <= 1'b0;
default : MEMACK <= MEMEND;
endcase
end
// May be MEMACK can be generated from ~IF_STALL & MEMEND
// From timing point of view, ACK should be
// combined at final stage of the MEMACK logic, not MEMEND.
always @(STATE or ACK) begin
case (STATE)
`S_IDLE : MEMEND <= 1'b1;
`S_IDLE_IFKP : MEMEND <= 1'b1;
`S_IFIN : MEMEND <= 1'b1;
default : if (ACK == 1'b1)
MEMEND <= 1'b1;
else
MEMEND <= 1'b0;
endcase
end
always @(NEXT_STATE) begin
if ((NEXT_STATE[1] == 1'b1) || (NEXT_STATE == `S_IFEX))
NXTBUS <= 1'b1;
else
NXTBUS <= 1'b0;
end
//-------------------
// Main State Machine
//-------------------
// state machine F/F
always @(posedge CLK or posedge RST) begin
if (RST == 1'b1)
STATE <= `S_IDLE ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -