📄 myline2.cpp
字号:
#include "mypoint.h"
/* 返回两个矢量l1和l2的夹角的余弦(-1 --- 1)注意:如果想从余弦求夹角的话,注意反余弦函数的定义域是从 0到pi */
double cosine(LINESEG l1,LINESEG l2)
{
return (((l1.e.x-l1.s.x)*(l2.e.x-l2.s.x) +
(l1.e.y-l1.s.y)*(l2.e.y-l2.s.y))/(dist(l1.e,l1.s)*dist(l2.e,l2.s))) );
}
// 返回线段l1与l2之间的夹角 单位:弧度 范围(-pi,pi)
double lsangle(LINESEG l1,LINESEG l2)
{
POINT o,s,e;
o.x=o.y=0;
s.x=l1.e.x-l1.s.x;
s.y=l1.e.y-l1.s.y;
e.x=l2.e.x-l2.s.x;
e.y=l2.e.y-l2.s.y;
return angle(o,s,e);
}
// 如果线段u和v相交(包括相交在端点处)时,返回true
//
//判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。
//判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。
bool intersect(LINESEG u,LINESEG v)
{
return( (max(u.s.x,u.e.x)>=min(v.s.x,v.e.x))&& //排斥实验
(max(v.s.x,v.e.x)>=min(u.s.x,u.e.x))&&
(max(u.s.y,u.e.y)>=min(v.s.y,v.e.y))&&
(max(v.s.y,v.e.y)>=min(u.s.y,u.e.y))&&
(multiply(v.s,u.e,u.s)*multiply(u.e,v.e,u.s)>=0)&& //跨立实验
(multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0));
}
// (线段u和v相交)&&(交点不是双方的端点) 时返回true
bool intersect_A(LINESEG u,LINESEG v)
{
return ((intersect(u,v))&&
(!online(u,v.s))&&
(!online(u,v.e))&&
(!online(v,u.e))&&
(!online(v,u.s)));
}
// 线段v所在直线与线段u相交时返回true;方法:判断线段u是否跨立线段v
bool intersect_l(LINESEG u,LINESEG v)
{
return multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0;
}
// 根据已知两点坐标,求过这两点的直线解析方程: a*x+b*y+c = 0 (a >= 0)
LINE makeline(POINT p1,POINT p2)
{
LINE tl;
int sign = 1;
tl.a=p2.y-p1.y;
if(tl.a<0)
{
sign = -1;
tl.a=sign*tl.a;
}
tl.b=sign*(p1.x-p2.x);
tl.c=sign*(p1.y*p2.x-p1.x*p2.y);
return tl;
}
// 根据直线解析方程返回直线的斜率k,水平线返回 0,竖直线返回 1e200
double slope(LINE l)
{
if(abs(l.a) < 1e-20)
return 0;
if(abs(l.b) < 1e-20)
return INF;
return -(l.a/l.b);
}
// 返回直线的倾斜角alpha ( 0 - pi)
double alpha(LINE l)
{
if(abs(l.a)< EP)
return 0;
if(abs(l.b)< EP)
return PI/2;
double k=slope(l);
if(k>0)
return atan(k);
else
return PI+atan(k);
}
// 求点p关于直线l的对称点
POINT symmetry(LINE l,POINT p)
{
POINT tp;
tp.x=((l.b*l.b-l.a*l.a)*p.x-2*l.a*l.b*p.y-2*l.a*l.c)/(l.a*l.a+l.b*l.b);
tp.y=((l.a*l.a-l.b*l.b)*p.y-2*l.a*l.b*p.x-2*l.b*l.c)/(l.a*l.a+l.b*l.b);
return tp;
}
// 如果两条直线 l1(a1*x+b1*y+c1 = 0), l2(a2*x+b2*y+c2 = 0)相交,返回true,且返回交点p
bool lineintersect(LINE l1,LINE l2,POINT &p) // 是 L1,L2
{
double d=l1.a*l2.b-l2.a*l1.b;
if(abs(d)<EP) // 不相交
return false;
p.x = (l2.c*l1.b-l1.c*l2.b)/d;
p.y = (l2.a*l1.c-l1.a*l2.c)/d;
return true;
}
// 如果线段l1和l2相交,返回true且交点由(inter)返回,否则返回false
bool intersection(LINESEG l1,LINESEG l2,POINT &inter)
{
LINE ll1,ll2;
ll1=makeline(l1.s,l1.e);
ll2=makeline(l2.s,l2.e);
if(lineintersect(ll1,ll2,inter))
return online(l1,inter);
else
return false;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -