📄 fft.cpp
字号:
/***********************************************************************
FFT_FREQ.C - SOURCE CODE FOR DISCRETE FOURIER TRANSFORM FUNCTIONS
fft In-place radix 2 decimation in time FFT
ifft In-place radix 2 decimation in time inverse FFT
draw-image Draw the inmage of input data
***********************************************************************/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <conio.h>
#include <graphics.h>
#include <dos.h>
/* function prototypes and structures for fft functions */
/* COMPLEX STRUCTUREN */
typeddf struct
{ float real,imag;
}COMPLEX;
#define PI 4.0 *atan(1.0)
void fft(COMPLEX *,int);
void ifft(COMPLEX *,int);
void draw_image(double *,int m,char *title,char *xdis);
/***********************************************************************/
void main(void)
{
int i,length,m;
char title[80],tmp[20];
struct time,timeps,timepe;
double *amp;
double a,tempflt;
COMPLEX * samp;
m=10;
length=1<<m;
amp=(double *)calloc(length+1,sizeof(double));
samp=(COMPLEX *)calloc(length+1,sizeof(COMPLEX));
if(!samp)
{printf("\nUnable to allocate complex array for fft\n");
exit(1);
}
/* Input sampling data for processing */
printf ("Waitting for sampling data...");
for(i=0;i<length;i++)
{
samp[i].real=sin(8 * PI * i / length);
amp[i]=samp[i].real;
}
for(i=length/2-10;i<=length/2+10;i++)
{
samp[i].real=1;
amp[i]=samp[i].real;
}
strcpy(title,"The Sampling Signal Data");
draw_image(amp,length,title,itoa(length,tmp,10));
/* Find the spectrum of the data */
printf("Waitting for the FFT calculation...\n");
gettime(&timeps);
fft(samp,m);
gettime(&tmepe);
printf("start time:%d:%d:%d.%d\n",timeps.ti_hour,timeps.ti_min,timeps.ti_sec,timeps.ti_hund);
printf("end time:%d:%d:%d.%d\n",timepe.ti_hour,timepe.ti_min,timepe.ti_sec,timepe.ti_hund);
printf("Press any key to continue....\n");
getch();
/* calculate magnitude */
for(i=0;i<length;i++)
{
tempflt = samp[i].real * samp[i].real;
tempflt + = samp[i].imag * samp[i].imag;
amp[i] = sqrt(tempflt)/length;
}
/* Copy a section of the spectrum to the magnitude image. */
strcpy(title,"The Signal Spectrum Result");
draw_image(amp,length,title,itoa(length,tmp,10));
printf("Waitting for the IFFT calculation...\n");
ifft(samp,m);
strcpy(title,"The IFFT Result");
for(i=0;i<length;i++)amp[i] = samp[i].real;
draw_image(amp,length,title,itoa(length,tmp,10));
free(samp);
free(amp);
}
/***********************************************************************
fft- In -place radix 2 decimation in time FFT
Requires pointer to complex array x ang power of 2 size of FFT m
(size of FFT =2 ^ m). Places FFT output on top of input COMPLEX array.
void fft(COMPLEX *x,int m)
**********************************************************************/
void fft(COMPLEXS *x,int m)
{
static COMPLEX *w; /* used to store the w complex array */
static int mstore = 0 /* stores m for future reference */
static int n = 1 ; /* length of fft stored for future */
COMPLEX u,temp,tm;
COMPLEX *xi,*xip,*xj,*wptr;
int i,j,k,l,le,windex;
double arg,w_real,w_image,wrecur_real,wrecur_imag,wtemp_real;
if(m ! = mstore)
/* free previously allocated storage and set new m */
{
if(mstore != 0) free(w);
mstore = m;
if(m==0)return;/*if m=0 then done */
/* n=2* * m=fft length */
n=1<<m;
le=n/2;
/* allocate the storage for w */
w=(COMPLEX * )calloc(le-1,sizeof(COMPLEX));
if(!w)
{
printf("\n Unable to allocate complex W array\n");
exit(1);
}
/* calculate the w values recursively */
arg = 4.0*atan(1.0)/le; /* PI/le calculation */
wrecur_real = w_real=cos(arg);
wrecur_imag = w_imag=-sin(arg);
xj=w;
for(j=1;j<le;j++)
{
xj->real = (float)wrecur_real;
xj->imag = (float)wrecur_imag;
xj++;
wtemp_real = wrecur_real * w_real - wrecur_imag * w_imag;
wrecur_imag = wrecur_real * w_imag + wrecur_imag * w_real;
wrecur_real = wtemp_real;
}
}
/* start fft */
le = n;
windex = 1;
for(l=0;l<m;l++)
{
le = le/2;
/* first iteration with no nultiplies */
for(i = 0;i < n;i = i + 2 * le)
{
xi = x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
xip->real = xi->real - xip->real;
xip->imag = xi->imag - xip->imag;
*xi = temp;
}
/* remaining iterations use stored w */
wptr = w + windex - 1;
for(j = 1;j < le;j++)
{
u = *wptr;
for(i = j;i < n;i = i + 2 * le)
{
xi = x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
tm.real = xi->real - xip->real;
tm.imag = xi->imag - xip->imag;
xip->real = tm.real * u.real - tm.imag * u.imag;
xip->imag = tm.real * u.imag + tm.imag * u.real;
*xi=temp;
}
wptr = wptr + windex;
}
windex = 2 * windex;
}
/* rearrange data by bit reversing */
j = 0;
for(i = 1;i < (n-1);i++)
{
k = n/2;
while(k <= j)
{
j = j - k;
k = k/2;
}
j = j + k;
if(i < j)
{
xi = x + i;
xj = x + j;
temp = *xj;
*xj = *xi;
*xi = temp;
}
}
}
/**************************************************************************
ifft - In - place radix 2 decimation in time inverse FFT
Requires pointer to complex array,x and power of 2 size of FFT,m
(size of FFT =2^m).Places inverse FFT output on top of input
frequency domain COMPLEX array.
void ifft(COMPLEX **,int m)
**************************************************************************/
void ifft(x,m)
COMPLEX *x;
int m;
{
static COMPLEX *w; /*used to store the w complex array */
static int mstore = 0; /* stores m for future reference */
static int n = 1; /* length of ifft stored for future */
COMPLEX u,temp,tm;
COMPLEX *xi,*xip,*xj,*wptr;
int i,j,k,l,le,windex;
double arg,w_real,w_imag,wrecur_real,wrecur_imag,wtemp_real;
float scale;
if(m != mstore)
{
/* free previously allocated storage and set new m */
if(mstore != 0)free(w);
mstore = m;
if(m == 0)return; /* if m=0 then done */
/* n=2 * *m=inverse fft length */
n = 1 << m;
le = n/2;
/* allocate the storage for w */
w=(COMPLEX *)calloc(le - 1,sizeof(COMPLEX));
if(!w)
{
printf("\nUnable to allocate complex W array\n");
exit(1);
}
/* calculate the w values recursively */
arg = 4.0 * atan(1.0)/le; /* PI/le calculation */
wrecur_real = w_real = cos(arg);
wrecur_imag = w_imag = sin(arg); /* opposite sign from fft */
xj = w;
for(j =1;j < le;j++)
{
xj->real = (float)wrecur_real;
xj->imag = (float)wrecur_imag;
xj++;
wtemp_real = wrecur_real * w_real - wrecur_imag * w_imag;
wtemp_imag = wrecur_real * w_imag - wrecur_imag * w_real;
wrecur_real = wtemp_real;
}
}
/* start inverse fft */
le = n;
windex = 1;
for(l = 0;i < m;l++)
{
le = le/2;
/* first iteration with no multiplies */
for(i = 0;i < n;i = i + 2 * le)
{
xi = x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
xip->real = xi->real - xip->real;
xip->imag = xi->imag - xip->imag;
*xi = temp;
}
/* remaining iterations use stored */
wptr = w +windex - 1;
for(j = 1;j < le;j++)
{
u = *wptr;
for(i = j;i < n;i = i + 2 * le)
{
xi = x + i;
xip = xi + le;
temp.real = xi->real + xip->real;
temp.imag = xi->imag + xip->imag;
tm.real = xi->real - xip->real;
tm.imag = xi->imag - xip->imag;
xip->real = tm.real * u.real - tm.imag * u.imag;
xip->imag = tm.real * u.imag + tm.imag * u.real;
*xi = temp;
}
wptr =wptr + windex;
}
windex = 2 * windex;
}
/* rearrange data by bit reversing */
j = 0;
for(i = 1;i < (n-1);i++)
{
k = n/2;
while(k <= j)
{
j = j - k;
k = k/2;
}
j = j + k;
if(i < j)
{
xi = x + i;
xj = x + j;
temp = *xj;
*xj = *xi;
*xi = temp;
}
}
/* scale all results bu 1/n */
scale = (float)(1.0/n);
for(i = 0;i < n;i++)
{
x->real = scale * x->real;
x->imag = scale * x->imag;
x++;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -