📄 test_amean.m
字号:
% This is a program that tries to cluster the Alz data using % ordinary k-means clustering.%%%clear all;close all;% Load the data setx=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140];y=[-0.021881828341771 -0.021881828341771 -0.021881828341771 -0.021083524236823 -0.020797108275962 -0.016876503356651 -0.015856050011838 -0.013779345888846 -0.009106233132451 -0.005624813964057 -0.003405177868704 -0.003152923405804 -0.003745748882259 -0.003142068038535 -0.002896962144365 -0.003227595586772 -0.002262306112948 -0.001327527969321 -0.003900294019864 -0.003689633695108 -0.001287040451335 -0.002181634362846 -0.002235470809100 -0.001516040085980 -0.001592484868364 -0.002314399360755 -0.001804748535677 -0.002181212949286 -0.001264073041297 -0.001181893707082 -0.002664185815702 -0.002512819809711 -0.001950818381466 -0.002796205989132 -0.002073664322522 -0.001572442643032 -0.002681324764007 -0.002982890572630 -0.001295176954821 -0.001619602455108 -0.001807277545965 -0.001337816648173 -0.002275028269621 -0.001700007304748 -0.001519927312688 -0.000155899113518 0.001100910546915 0.001829660800208 0.001240338647521 0.001587781912289 0.002823745622741 0.002758860096793 0.002440651793705 0.003444175600133 0.002446211700316 0.004233369884317 0.005305090176390 0.003412871862123 0.003668627469335 0.003659646411173 0.003258635394610 0.003189433408848 0.004294141921664 0.004113622119704 0.004672824562664 0.005502392692646 0.005155467267900 0.004201645934347 0.004750626177230 0.000737279467410 0.002000154771299 0.002524781155875 -0.002410674095743 -0.001693937813800 -0.001322066038932 -0.001669437484068 -0.001173325594638 -0.000607342134853 -0.000855469948577 -0.000926062304057 0.000177327773550 0.000289194987164 0.001435580540774 0.002371097590729 0.002174050410176 0.001710583811841 0.002104320142235 0.002098945317270 0.003945237626348 0.004213733413022 0.009456221923552 0.013080297492680 0.021122327529092 0.027292050066897 0.030566072670254 0.031581655882231 0.034318344746969 0.039053466652342 0.048502645361135 0.049643045342036 0.055228546455148 0.058539287793052 0.065022573687323 0.073957123818398 0.075681025257528 0.086822283149206 0.092949100520164 0.098759239720064 0.100678983198612 0.103774445071458 0.111187091647697 0.113616626928474 0.122077171598242 0.135270760892285 0.136046973904117 0.146087111054490 0.148104326668503 0.156421200781967 0.163132154281109 0.163460924295325 0.174272513461334 0.183287597317569 0.196051391786053 0.200752946354822 0.205532314104583 0.216962990066240 0.219135118086223 0.228884164476150 0.239837505915095 0.242932583852069 0.254634729725419 0.253496085950602 0.260841497214296 0.279633044490315 0.281301234627232 0.288406547182389 0.295075164759664 0.304440165180450 0.314457776779786 0.323912313017970 ];xx=x';yy=y';for i=1:140 Alz1(i,1)=xx(i); Alz1(i,2)=yy(i);endAlz=[Alz1];% Call the clustering program% Cluster parametersmode = 0;incnp = 5;eta = 0.2;deta = 1.0;maxepoch = 1000;info = 2;NK = 5;pause = 0.2;[dbelong, neach, clust, Nepoch, ST, DB] = ... kmeans_ser(Alz, NK, mode, incnp, eta, deta, maxepoch, info, pause);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -