📄 jdhuff.c
字号:
state->cur.get_buffer = get_buffer;
state->cur.bits_left = bits_left;
return TRUE;
}
/*
* These macros provide the in-line portion of bit fetching.
* Use check_bit_buffer to ensure there are N bits in get_buffer
* before using get_bits, peek_bits, or drop_bits.
* check_bit_buffer(state,n,action);
* Ensure there are N bits in get_buffer; if suspend, take action.
* val = get_bits(state,n);
* Fetch next N bits.
* val = peek_bits(state,n);
* Fetch next N bits without removing them from the buffer.
* drop_bits(state,n);
* Discard next N bits.
* The value N should be a simple variable, not an expression, because it
* is evaluated multiple times.
*/
#define check_bit_buffer(state,nbits,action) \
{ if ((state).cur.bits_left < (nbits)) \
if (! fill_bit_buffer(&(state), nbits)) \
{ action; } }
#define get_bits(state,nbits) \
(((int) ((state).cur.get_buffer >> ((state).cur.bits_left -= (nbits)))) & ((1<<(nbits))-1))
#define peek_bits(state,nbits) \
(((int) ((state).cur.get_buffer >> ((state).cur.bits_left - (nbits)))) & ((1<<(nbits))-1))
#define drop_bits(state,nbits) \
((state).cur.bits_left -= (nbits))
/*
* Code for extracting next Huffman-coded symbol from input bit stream.
* We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
* without looping. Usually, more than 95% of the Huffman codes will be 8
* or fewer bits long. The few overlength codes are handled with a loop.
* The primary case is made a macro for speed reasons; the secondary
* routine slow_DECODE is rarely entered and need not be inline code.
*
* Notes about the huff_DECODE macro:
* 1. Near the end of the data segment, we may fail to get enough bits
* for a lookahead. In that case, we do it the hard way.
* 2. If the lookahead table contains no entry, the next code must be
* more than HUFF_LOOKAHEAD bits long.
* 3. slow_DECODE returns -1 if forced to suspend.
*/
#define huff_DECODE(result,state,htbl,donelabel) \
{ if (state.cur.bits_left < HUFF_LOOKAHEAD) { \
if (! fill_bit_buffer(&state, 0)) return FALSE; \
if (state.cur.bits_left < HUFF_LOOKAHEAD) { \
if ((result = slow_DECODE(&state, htbl, 1)) < 0) return FALSE; \
goto donelabel; \
} \
} \
{ register int nb, look; \
look = peek_bits(state, HUFF_LOOKAHEAD); \
if ((nb = htbl->look_nbits[look]) != 0) { \
drop_bits(state, nb); \
result = htbl->look_sym[look]; \
} else { \
if ((result = slow_DECODE(&state, htbl, HUFF_LOOKAHEAD+1)) < 0) \
return FALSE; \
} \
} \
donelabel:; \
}
LOCAL int
slow_DECODE (working_state * state, D_DERIVED_TBL * htbl, int min_bits)
{
register int l = min_bits;
register INT32 code;
/* huff_DECODE has determined that the code is at least min_bits */
/* bits long, so fetch that many bits in one swoop. */
check_bit_buffer(*state, l, return -1);
code = get_bits(*state, l);
/* Collect the rest of the Huffman code one bit at a time. */
/* This is per Figure F.16 in the JPEG spec. */
while (code > htbl->maxcode[l]) {
code <<= 1;
check_bit_buffer(*state, 1, return -1);
code |= get_bits(*state, 1);
l++;
}
/* With garbage input we may reach the sentinel value l = 17. */
if (l > 16) {
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
return 0; /* fake a zero as the safest result */
}
return htbl->pub->huffval[ htbl->valptr[l] +
((int) (code - htbl->mincode[l])) ];
}
/* Figure F.12: extend sign bit.
* On some machines, a shift and add will be faster than a table lookup.
*/
#ifdef AVOID_TABLES
#define huff_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
#else
#define huff_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
static const int extend_test[16] = /* entry n is 2**(n-1) */
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
#endif /* AVOID_TABLES */
/*
* Check for a restart marker & resynchronize decoder.
* Returns FALSE if must suspend.
*/
LOCAL boolean
process_restart (j_decompress_ptr cinfo)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
int ci;
/* Throw away any unused bits remaining in bit buffer; */
/* include any full bytes in next_marker's count of discarded bytes */
cinfo->marker->discarded_bytes += entropy->saved.bits_left / 8;
entropy->saved.bits_left = 0;
/* Advance past the RSTn marker */
if (! (*cinfo->marker->read_restart_marker) (cinfo))
return FALSE;
/* Re-initialize DC predictions to 0 */
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
entropy->saved.last_dc_val[ci] = 0;
/* Reset restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
entropy->printed_eod = FALSE; /* next segment can get another warning */
return TRUE;
}
/* ZAG[i] is the natural-order position of the i'th element of zigzag order.
* If the incoming data is corrupted, decode_mcu could attempt to
* reference values beyond the end of the array. To avoid a wild store,
* we put some extra zeroes after the real entries.
*/
static const int ZAG[DCTSIZE2+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
0, 0, 0, 0, 0, 0, 0, 0, /* extra entries in case k>63 below */
0, 0, 0, 0, 0, 0, 0, 0
};
/*
* Decode and return one MCU's worth of Huffman-compressed coefficients.
* The coefficients are reordered from zigzag order into natural array order,
* but are not dequantized.
*
* The i'th block of the MCU is stored into the block pointed to by
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
* (Wholesale zeroing is usually a little faster than retail...)
*
* Returns FALSE if data source requested suspension. In that case no
* changes have been made to permanent state. (Exception: some output
* coefficients may already have been assigned. This is harmless for
* this module, but would not work for decoding progressive JPEG.)
*/
METHODDEF boolean
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
register int s, k, r;
int blkn, ci;
JBLOCKROW block;
working_state state;
D_DERIVED_TBL * dctbl;
D_DERIVED_TBL * actbl;
jpeg_component_info * compptr;
/* Process restart marker if needed; may have to suspend */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
if (! process_restart(cinfo))
return FALSE;
}
/* Load up working state */
state.unread_marker = cinfo->unread_marker;
state.next_input_byte = cinfo->src->next_input_byte;
state.bytes_in_buffer = cinfo->src->bytes_in_buffer;
ASSIGN_STATE(state.cur, entropy->saved);
state.cinfo = cinfo;
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
/* Decode a single block's worth of coefficients */
/* Section F.2.2.1: decode the DC coefficient difference */
huff_DECODE(s, state, dctbl, label1);
if (s) {
check_bit_buffer(state, s, return FALSE);
r = get_bits(state, s);
s = huff_EXTEND(r, s);
}
/* Shortcut if component's values are not interesting */
if (! compptr->component_needed)
goto skip_ACs;
/* Convert DC difference to actual value, update last_dc_val */
s += state.cur.last_dc_val[ci];
state.cur.last_dc_val[ci] = s;
/* Output the DC coefficient (assumes ZAG[0] = 0) */
(*block)[0] = (JCOEF) s;
/* Do we need to decode the AC coefficients for this component? */
if (compptr->DCT_scaled_size > 1) {
/* Section F.2.2.2: decode the AC coefficients */
/* Since zeroes are skipped, output area must be cleared beforehand */
for (k = 1; k < DCTSIZE2; k++) {
huff_DECODE(s, state, actbl, label2);
r = s >> 4;
s &= 15;
if (s) {
k += r;
check_bit_buffer(state, s, return FALSE);
r = get_bits(state, s);
s = huff_EXTEND(r, s);
/* Output coefficient in natural (dezigzagged) order */
(*block)[ZAG[k]] = (JCOEF) s;
} else {
if (r != 15)
break;
k += 15;
}
}
} else {
skip_ACs:
/* Section F.2.2.2: decode the AC coefficients */
/* In this path we just discard the values */
for (k = 1; k < DCTSIZE2; k++) {
huff_DECODE(s, state, actbl, label3);
r = s >> 4;
s &= 15;
if (s) {
k += r;
check_bit_buffer(state, s, return FALSE);
drop_bits(state, s);
} else {
if (r != 15)
break;
k += 15;
}
}
}
}
/* Completed MCU, so update state */
cinfo->unread_marker = state.unread_marker;
cinfo->src->next_input_byte = state.next_input_byte;
cinfo->src->bytes_in_buffer = state.bytes_in_buffer;
ASSIGN_STATE(entropy->saved, state.cur);
/* Account for restart interval (no-op if not using restarts) */
entropy->restarts_to_go--;
return TRUE;
}
/*
* Module initialization routine for Huffman entropy decoding.
*/
GLOBAL void
jinit_huff_decoder (j_decompress_ptr cinfo)
{
huff_entropy_ptr entropy;
int i;
entropy = (huff_entropy_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(huff_entropy_decoder));
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
entropy->pub.start_pass = start_pass_huff_decoder;
entropy->pub.decode_mcu = decode_mcu;
/* Mark tables unallocated */
for (i = 0; i < NUM_HUFF_TBLS; i++) {
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -