⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 005.htm

📁 这是一本关于复杂性科学的书——这门学科还如此之新
💻 HTM
📖 第 1 页 / 共 5 页
字号:
<BR>
  他说,当然,黑塞并没有十分清晰地说明这些究竟是怎么弄出来的。但荷兰德并不介意这一点。玻璃珠游戏比他所看见和听到过的任何事物都能抓住他的心,就像国际象棋、科学、计算机和大脑一样令他着迷。形象地说,这个游戏正是他一生的追求:“我就是希望能够抓住世界万物的主旋律,然后把它们揉合在一起,看它们会发生什么情况。”他说。
<BR>
  存储在Glasperlenspiel档案库中的思想的一个特别丰富的源泉是另一本书。有一天荷兰德在数学系图书馆创览群书时,发现了费舍尔(R.A.Fisher)1929年出版的里程碑式的巨著《自然选择之基因理论》。
<BR>
  起初荷兰德根为之着迷。“从中学时代起我就一直很喜欢阅读基因和进化方面的书,”他说。每一代人都会重组父母遗传的基因,他对这个思想非常赞赏。你可以计算像蓝眼睛、黑头发这样的特性出现在下一代身上有多么经常。“我总是想,哇,这个计算真是干净利落。但读了费舍尔的书后我第一次认识到,在这个领域里,除了用平常的代数学以外还可以尝试别的东西。”确实,费舍尔就用了许多更加复杂的概念,从微分、积分到概率理论。他的书用真正严谨细致的数学方法对自然选择如何改变了基因分布做了分析。对生物学家来说,这样的书是第一本。这同时也给当代“新达尔文”的进化理论奠定了基石。二十五年之后,这一理论仍然代表了进化动力学理论的最高标准。
<BR>
  所以荷兰德一口气读完了这本书。“我可以把我在数学课上学的积分、微分方程和其他方法都用于动力基因学的这场革命了。这真是一本令人大开眼界的书。我一读到这本书就知道,我不会放过这书里的思想。我知道我必须用这本书里的思想做点什么,我脑子里一直转着这些想法,不断地做着笔记。”
<BR>
  但尽管荷兰德非常崇拜费舍尔的数学,但费舍尔运用数学的某种方法却使他感到困惑。而且他越是深思,越是感到困惑。
<BR>
  首先,费舍尔对自然选择的整个分析着重于一次一个基因的进化,仿佛每一个单个基因对生物体生存的作用是可以完全脱离其他基因而独立存在的。大致地说,费舍尔假设基因的行动完全是线性的。“我知道这肯定是错的。”荷兰德说。对绿眼睛来说,没有几十个、或几百个基因形成绿眼睛的特别结构,单个的绿眼睛基因是微不足道的。荷兰德认识到,每一个基因必须作为一部分才能发挥作用。任何理论如果不把这个事实包括进去,就缺少了进化这个故事中最关键的一部分。对这个问题的思考,正是希伯在精神领域研究中一直强调的。从思想的最基本的单位这一点来说,希伯的细胞集合有点儿像基因。一种声调、一束光线、一簇肌肉的抽动,所有这些能具有意义的唯一方式是把彼此组合成更大的概念和更复杂的行为。
<BR>
  另外,费舍尔一直在谈论进化能达到稳定的均衡,这也使荷兰德感到不解。在这种稳定的均衡状态中,物种的大小达到了理想化、牙齿的锐利程度达到了理想化、生存和繁衍能力也达到了理想化。费舍尔的观点和经济学家的经济均衡的定义基本上是一致的:他说,当一个物种的状况达到了最佳程度之后,任何变化都会降低这种最佳化程度。所以自然选择就无法对变化形成进一步的压力。“费舍尔理论中的大部分内容在强调这样一种观点:‘好吧,由于下述进程,这个系统会走入哈迪-温伯格(Hardy-Weinberg)的均衡状态……’但这在我听起来不像是进化论。”
<BR>
  他又重读了达尔文和赫伯。不,费舍尔关于均衡的概念与进化论毫不相干。费舍尔似乎在谈论某种原始而永恒的完美境界的实现。“但在达尔文那里,事物随着时间的推移越变越宽广,越变越多样化。但费舍尔的数学并不触及这一点。而赫伯说的是学习,不是进化,其道理却是同样的:人的头脑随着不断从外界吸取经验,越变越丰富、越变越灵巧、越变越令人惊异。”
<BR>
  对荷兰德来说,进化和学习似乎与游戏非常相似。他认为,在这两种情况中,都有一个作用者在与自己的环境对抗,为自己的继续发展争取足够的条件。在进化中,所获报酬就是生存,一个让作用者将基因遗传给下一代的机会。在学习中,所获是某种奖赏,比如食物、愉悦的感觉或情感的满足。在这两种情况下,所获(或所缺)都是给予作用者的一种反馈,以利于它们改进自我表现:如果作用者想获得使自己“适应”的能力,就不得不采取能够获得丰厚报酬的策略,放弃其它策略。
<BR>
  荷兰德不禁想起塞缪尔的跳棋下法程序,这个程序正是利用了这种反馈:它可以随着不断吸取经验和更多地了解对方而经常改变战术。但现在荷兰德开始认识到塞缪尔将注意力放在游戏上是多么具有先见之明了。游戏的这一相似性似乎可以解释任何适应性系统。在经济中,所获是金钱,在政治中,所获是选票,等等。在某种程度上,所有这些适应性系统在根本上都是一样的,这反过来又意味着,所有这些系统从根本上就像下跳棋或象棋一样:可能性的空间大得难以想象。一个作用者不断改进下棋技术,这便是适应。但要想寻找到这场游戏的最佳化和稳定的均衡点,就好比下国际象棋一样,你根本就无法穷尽其无限的可能性。
<BR>
  毫不奇怪,对荷兰德来说,“均衡”并不是进化,甚至不像是他们三个十四岁的男孩一起在地下室玩的那种战争游戏。均衡意味着结束。但对荷兰德来说,进化的实质是旅程,是无穷无尽地展现出来的惊异。“我越来越清楚地认识到,我所想了解、所好奇、所为之发现而欢欣鼓舞的是什么。均衡并非其中的一部分。”
<BR>
  荷兰德在撰写博士论文的时候,暂时把这些想法搁置一旁。但1959年他刚刚毕业——那时勃克斯已经邀请他继续留在计算机逻辑小组做博士后——就决定将自己的这些想法变为完整而严谨的适应性理论。他说:“我相信如果我将基因的适应性当作最长久的适应性来观察,把神经系统当作最短期的适应性来观察,那么,这两者之间的总体性理论框架将是相同的。”为了将他脑子里的这些初步想法陈述清楚,他甚至就这个研究课题写了一个宣言,这份他于1961年7月发表的长达四十八页的技术报告的题目是:《适应性系统逻辑理论之非正式描述》。
<BR>
  他在计算机逻辑小组发现了许多紧皱的眉头。但这并不是一种敌意,而是有些人认为他的这个一般性的适应性理论听起来太稀奇古怪了。难道荷兰德不能把时间花在更富有成果的研究上?
<BR>
  “但问题在于,这是一个古怪的想法吗?”荷兰德回忆此事时愉快地承认,如果他在他同事的位置上,他也会对此持怀疑态度。“我所从事的研究不属于既完善又为人熟知的学科范畴。它既不能算硬件,也不能算软件。而那时它当然也不属于人工智能。所以你无法用任何常规标准来对它做出判断。”
<BR>
  勃克斯却并不需要他来说服。“我支持荷兰德,”勃克斯说。“有一些逻辑学家们认为荷兰德的研究并不属于‘计算机逻辑’范畴之内。他们的思想更为传统,但我告诉他们,这正是我们需要做的,为这个项目争取经费的重要性和其他项目等同。”结果勃克斯赢了:作为这个项目的创始人和带头人,他的话有相当大的分量。渐渐地,对荷兰德研究的怀疑消失了。1964年,在勃克斯的大力推荐下,荷兰德获得了终身教职。他说:“那些年,在很大程度上我全靠勃克斯为我做挡箭牌。”
<BR>
  确实,勃克斯的支持所给予荷兰德的安全感使他能够力争获取适应性理论的研究成果。到1962年,他放下了他的所有其它研究项目,基本上全力投入了对适应性理论的研究。特别是他下决心解决基于多基因的选择的难题——这不仅仅是因为费舍尔在书中对单体基因的假设最使他感到困惑,同时也是因为对多基因的研究也是摆脱均衡的困惑的关键。
<BR>
  荷兰德说,公平地评价费舍尔,均衡的概念就每个单独的基因而言不无意义。比如,假设某个物种有一千个基因,大致上与海藻一样复杂。为了使事情简单明了,再假定每个基因只含有两种信息,绿色的或棕色的,叶片皱折的或叶片平滑的,等等。自然选择要经过多少次尝试才能发现使海藻发展到最强壮的那组基因搭配呢?
<BR>
  荷兰德说,如果假设所有基因都是相互独立的,那么,你只需要两次选择就能确定哪种基因信息更好。这就需要对一千个基因各做两次尝试,总共两千次,这不算太多。事实上,相对而言这个数目实在是太小了,如果是这样的话,海藻很快就会达到最强健的状况,而物种确实就能达到进化的均衡点。
<BR>
  但当我们假设基因并不是相互独立的,让我们来看看含有一千个基因的海藻会发生什么样的情形。如果是为达到最强壮状态,自然选择就会检验每一个可能的基因组合。因为每个基因组合都有其不同的强健性。当你计算基因组合的总数,就不是二乘以一千,而是二自乘一千次了,即二的一千次方,或大约为十的三百次方——这个数目大得甚至使跳棋的步数都显得微不足道。荷兰德说:“进化甚至根本就不可能做这么多次数的尝试。而且无论我们把计算机发展到多先进也做不到。”确实,就算在可观察到的宇宙中所有的基本粒子都变成超级计算机,从大爆炸就开始不停地运算,也远不能完成运算。另外必须记住,这还只是就海藻而言。人类和其它哺乳类动物含有的基因数大概是海藻含有基因数的一百倍,而且大多数基因都含有不止两条信息。
<BR>
  所以再次出现了这种情形:这是一个向着无穷无尽的可能性的空间探索的系统,不存在哪怕为一个基因找到“最佳”点的现实希望。进化所能达到的是不断改进,而绝非尽善尽美。但这当然正是他1962年就已经决意要找到回答的问题。但如何寻找答案呢?了解多种基因进化的问题显然不只是用多变量方程式来替代费舍尔的单一变量方程式这么简单的事。荷兰德想知道的是,进化是怎样于无穷无尽的可能性的探索中找到有用的基因组合,而不需要搜遍整个领域。
<BR>
  当时,相似的“可能性爆炸”概念已经为主流人工智能研究人员所熟知。比如,在匹兹堡卡内基理工学院(即现在的卡内基麦伦大学),爱伦·妞威尔(Allem Newell)和赫伯特·西蒙(Herbert Simon)自五十年代中期开始就在进行一项里程碑式的研究,即,研究人类如何解决问题。纽威尔和西蒙让被试验对象猜各种谜语和玩各种游戏,包括下国际象棋,并让被实验对象陈述在这个过程中自己的思想。他们通过这种方法发现,人类解决问题总是会涉及脑力对广阔的可能性“问题空间”的逐步搜索,而每一步都以实际经验为导向:“如果情况是这样的话,那么就该采取那个步骤。”纽威尔和西蒙通过将他们的理论编入“一般问题解决法”(General Problem Solver)程序和将这个程序应用于解那些谜语和游戏,表明“问题-空间”角度能够出色地反映人类的推理风格。确实,他们的经验性检索概念早已成为人工智能领域的金科玉律。一般问题解决法至今仍然是新兴的人工智能发展史上最有影响的程序之一。
<BR>
  但荷兰德仍然对此半信半疑。这并不是因为他认为纽威尔和西蒙对问题空间和经验导向的概念有什么错误。事实上,他取得博士学位不久就特意邀请他们两位来密西根大学讲授人工智能的主课。从此他和纽威尔成了朋友和知识上的伙伴。但纽威尔-西蒙的理论不能在生物进化研究上有助于他。进化论的整个慨念中没有任何经验可循,也没有任何导向。一代代的物种是通过突变和两性基因的随机重组,简言之,是通过尝试和错误,探索于可能性的空间。而且,这一代代物种并不采取逐步逐步的方式搜索于基因组合的可能性之中,而是采取齐头并进的搜索方式:物群中的每一个成员的基因组合都略有不同,所搜索的空间也略有不同。但尽管有这些不同之处,尽管进化的时间更为长久,但它所产生的创意和奇迹恰如脑力活动。对荷兰德本说,这意味着,适应性的真正的统一规律隐藏在更深的层次之中。但到底隐藏在哪儿呢?
<BR>
  起初,只有直觉告诉他,某些基因组之间能够很好地相互作用,形成统一而自我强化的整体。比如像能够告诉细胞如何从葡萄糖分子里吸取能量的基因群,或能够控制细胞分裂的基因群,或能够指导细胞如何与其它细胞组合成某种生理组织的基因群。荷兰德也能从希伯的大脑理论中看到某种相似之处。在这个理论中,一组相互共鸣的细胞集合能够形成一个统一的概念,比如“汽车”,或者一个像举起胳臂这样协调的动作。
<BR>
  但是,荷兰德越是思考统一而自我加强的基因群这个概念,整桩事就越显得微妙。首先,到处都有类似的例子,比如计算机程序中的子程序、官僚体系中的部门。以及国际象棋

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -