⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 intelfbhw.c

📁 linux-2.4.29操作系统的源码
💻 C
📖 第 1 页 / 共 3 页
字号:
	printk("	SRC_SIZE_A:		0x%08x\n", hw->src_size_a);	printk("	BCLRPAT_A:		0x%08x\n", hw->bclrpat_a);	printk("	HTOTAL_B:		0x%08x\n", hw->htotal_b);	printk("	HBLANK_B:		0x%08x\n", hw->hblank_b);	printk("	HSYNC_B:		0x%08x\n", hw->hsync_b);	printk("	VTOTAL_B:		0x%08x\n", hw->vtotal_b);	printk("	VBLANK_B:		0x%08x\n", hw->vblank_b);	printk("	VSYNC_B:		0x%08x\n", hw->vsync_b);	printk("	SRC_SIZE_B:		0x%08x\n", hw->src_size_b);	printk("	BCLRPAT_B:		0x%08x\n", hw->bclrpat_b);	printk("	ADPA:			0x%08x\n", hw->adpa);	printk("	DVOA:			0x%08x\n", hw->dvoa);	printk("	DVOB:			0x%08x\n", hw->dvob);	printk("	DVOC:			0x%08x\n", hw->dvoc);	printk("	DVOA_SRCDIM:		0x%08x\n", hw->dvoa_srcdim);	printk("	DVOB_SRCDIM:		0x%08x\n", hw->dvob_srcdim);	printk("	DVOC_SRCDIM:		0x%08x\n", hw->dvoc_srcdim);	printk("	LVDS:			0x%08x\n", hw->lvds);	printk("	PIPEACONF:		0x%08x\n", hw->pipe_a_conf);	printk("	PIPEBCONF:		0x%08x\n", hw->pipe_b_conf);	printk("	DISPARB:		0x%08x\n", hw->disp_arb);	printk("	CURSOR_A_CONTROL:	0x%08x\n", hw->cursor_a_control);	printk("	CURSOR_B_CONTROL:	0x%08x\n", hw->cursor_b_control);	printk("	CURSOR_A_BASEADDR:	0x%08x\n", hw->cursor_a_base);	printk("	CURSOR_B_BASEADDR:	0x%08x\n", hw->cursor_b_base);	printk("	CURSOR_A_PALETTE:	");	for (i = 0; i < 4; i++) {		printk("0x%08x", hw->cursor_a_palette[i]);		if (i < 3)			printk(", ");	}	printk("\n");	printk("	CURSOR_B_PALETTE:	");	for (i = 0; i < 4; i++) {		printk("0x%08x", hw->cursor_b_palette[i]);		if (i < 3)			printk(", ");	}	printk("\n");	printk("	CURSOR_SIZE:		0x%08x\n", hw->cursor_size);	printk("	DSPACNTR:		0x%08x\n", hw->disp_a_ctrl);	printk("	DSPBCNTR:		0x%08x\n", hw->disp_b_ctrl);	printk("	DSPABASE:		0x%08x\n", hw->disp_a_base);	printk("	DSPBBASE:		0x%08x\n", hw->disp_b_base);	printk("	DSPASTRIDE:		0x%08x\n", hw->disp_a_stride);	printk("	DSPBSTRIDE:		0x%08x\n", hw->disp_b_stride);	printk("	VGACNTRL:		0x%08x\n", hw->vgacntrl);	printk("	ADD_ID:			0x%08x\n", hw->add_id);	for (i = 0; i < 7; i++) {		printk("	SWF0%d			0x%08x\n", i,			hw->swf0x[i]);	}	for (i = 0; i < 7; i++) {		printk("	SWF1%d			0x%08x\n", i,			hw->swf1x[i]);	}	for (i = 0; i < 3; i++) {		printk("	SWF3%d			0x%08x\n", i,			hw->swf3x[i]);	}	for (i = 0; i < 8; i++)		printk("	FENCE%d			0x%08x\n", i,			hw->fence[i]);	printk("	INSTPM			0x%08x\n", hw->instpm);	printk("	MEM_MODE		0x%08x\n", hw->mem_mode);	printk("	FW_BLC_0		0x%08x\n", hw->fw_blc_0);	printk("	FW_BLC_1		0x%08x\n", hw->fw_blc_1);	printk("hw state dump end\n");#endif}/* Split the M parameter into M1 and M2. */static intsplitm(unsigned int m, unsigned int *retm1, unsigned int *retm2){	int m1, m2;	m1 = (m - 2 - (MIN_M2 + MAX_M2) / 2) / 5 - 2;	if (m1 < MIN_M1)		m1 = MIN_M1;	if (m1 > MAX_M1)		m1 = MAX_M1;	m2 = m - 5 * (m1 + 2) - 2;	if (m2 < MIN_M2 || m2 > MAX_M2 || m2 >= m1) {		return 1;	} else {		*retm1 = (unsigned int)m1;		*retm2 = (unsigned int)m2;		return 0;	}}/* Split the P parameter into P1 and P2. */static intsplitp(unsigned int p, unsigned int *retp1, unsigned int *retp2){	int p1, p2;	if (p % 4 == 0)		p2 = 1;	else		p2 = 0;	p1 = (p / (1 << (p2 + 1))) - 2;	if (p % 4 == 0 && p1 < MIN_P1) {		p2 = 0;		p1 = (p / (1 << (p2 + 1))) - 2;	}	if (p1  < MIN_P1 || p1 > MAX_P1 || (p1 + 2) * (1 << (p2 + 1)) != p) {		return 1;	} else {		*retp1 = (unsigned int)p1;		*retp2 = (unsigned int)p2;		return 0;	}}static intcalc_pll_params(int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,		u32 *retp2, u32 *retclock){	u32 m1, m2, n, p1, p2, n1;	u32 f_vco, p, p_best = 0, m, f_out;	u32 err_max, err_target, err_best = 10000000;	u32 n_best = 0, m_best = 0, f_best, f_err;	u32 p_min, p_max, p_inc, div_min, div_max;	/* Accept 0.5% difference, but aim for 0.1% */	err_max = 5 * clock / 1000;	err_target = clock / 1000;	DBG_MSG("Clock is %d\n", clock);	div_max = MAX_VCO_FREQ / clock;	div_min = ROUND_UP_TO(MIN_VCO_FREQ, clock) / clock;	if (clock <= P_TRANSITION_CLOCK)		p_inc = 4;	else		p_inc = 2;	p_min = ROUND_UP_TO(div_min, p_inc);	p_max = ROUND_DOWN_TO(div_max, p_inc);	if (p_min < MIN_P)		p_min = 4;	if (p_max > MAX_P)		p_max = 128;	DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);	p = p_min;	do {		if (splitp(p, &p1, &p2)) {			WRN_MSG("cannot split p = %d\n", p);			p += p_inc;			continue;		}		n = MIN_N;		f_vco = clock * p;		do {			m = ROUND_UP_TO(f_vco * n, PLL_REFCLK) / PLL_REFCLK;			if (m < MIN_M)				m = MIN_M;			if (m > MAX_M)				m = MAX_M;			f_out = CALC_VCLOCK3(m, n, p);			if (splitm(m, &m1, &m2)) {				WRN_MSG("cannot split m = %d\n", m);				n++;				continue;			}			if (clock > f_out)				f_err = clock - f_out;			else				f_err = f_out - clock;						if (f_err < err_best) {				m_best = m;				n_best = n;				p_best = p;				f_best = f_out;				err_best = f_err;			}			n++;		} while ((n <= MAX_N) && (f_out >= clock));		p += p_inc;	} while ((p <= p_max));	if (!m_best) {		WRN_MSG("cannot find parameters for clock %d\n", clock);		return 1;	}	m = m_best;	n = n_best;	p = p_best;	splitm(m, &m1, &m2);	splitp(p, &p1, &p2);	n1 = n - 2;		DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "		"f: %d (%d), VCO: %d\n",		m, m1, m2, n, n1, p, p1, p2,		CALC_VCLOCK3(m, n, p), CALC_VCLOCK(m1, m2, n1, p1, p2),		CALC_VCLOCK3(m, n, p) * p);	*retm1 = m1;	*retm2 = m2;	*retn = n1;	*retp1 = p1;	*retp2 = p2;	*retclock = CALC_VCLOCK(m1, m2, n1, p1, p2);		return 0;}static __inline__ intcheck_overflow(u32 value, u32 limit, const char *description){	if (value > limit) {		WRN_MSG("%s value %d exceeds limit %d\n",			description, value, limit);		return 1;	}	return 0;}/* It is assumed that hw is filled in with the initial state information. */intintelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,		     struct fb_var_screeninfo *var){	int pipe = PIPE_A;	u32 *dpll, *fp0, *fp1;	u32 m1, m2, n, p1, p2, clock_target, clock;	u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;	u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;	u32 vsync_pol, hsync_pol;	u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;	struct display *disp;	DBG_MSG("intelfbhw_mode_to_hw\n");	disp = GET_DISP(&dinfo->info, dinfo->currcon);	/* Disable VGA */	hw->vgacntrl |= VGA_DISABLE;	/* Check whether pipe A or pipe B is enabled. */	if (hw->pipe_a_conf & PIPECONF_ENABLE)		pipe = PIPE_A;	else if (hw->pipe_b_conf & PIPECONF_ENABLE)		pipe = PIPE_B;		/* Set which pipe's registers will be set. */	if (pipe == PIPE_B) {		dpll = &hw->dpll_b;		fp0 = &hw->fpb0;		fp1 = &hw->fpb1;		hs = &hw->hsync_b;		hb = &hw->hblank_b;		ht = &hw->htotal_b;		vs = &hw->vsync_b;		vb = &hw->vblank_b;		vt = &hw->vtotal_b;		ss = &hw->src_size_b;		pipe_conf = &hw->pipe_b_conf;	} else {		dpll = &hw->dpll_a;		fp0 = &hw->fpa0;		fp1 = &hw->fpa1;		hs = &hw->hsync_a;		hb = &hw->hblank_a;		ht = &hw->htotal_a;		vs = &hw->vsync_a;		vb = &hw->vblank_a;		vt = &hw->vtotal_a;		ss = &hw->src_size_a;		pipe_conf = &hw->pipe_a_conf;	}	/* Use ADPA register for sync control. */	hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;	/* sync polarity */	hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;	vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?			ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;	hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |		      (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));	hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |		    (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);	/* Connect correct pipe to the analog port DAC */	hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);	hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);	/* Set DPMS state to D0 (on) */	hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;	hw->adpa |= ADPA_DPMS_D0;	*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);	*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);	*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);	/* Desired clock in kHz */	clock_target = 1000000000 / var->pixclock;	if (calc_pll_params(clock_target, &m1, &m2, &n, &p1, &p2, &clock)) {		WRN_MSG("calc_pll_params failed\n");		return 1;	}	/* Check for overflow. */	if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))		return 1;	if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))		return 1;	if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))		return 1;	if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))		return 1;	if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))		return 1;	*dpll &= ~DPLL_P1_FORCE_DIV2;	*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |		   (DPLL_P1_MASK << DPLL_P1_SHIFT));	*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);	*fp0 = (n << FP_N_DIVISOR_SHIFT) |	       (m1 << FP_M1_DIVISOR_SHIFT) |	       (m2 << FP_M2_DIVISOR_SHIFT);	*fp1 = *fp0;	/* Make sure DVOB and DVOC are disabled for now. */	hw->dvob &= ~PORT_ENABLE;	hw->dvoc &= ~PORT_ENABLE;	/* Use display plane A. */	hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;	hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;	hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;	switch (intelfb_var_to_depth(var)) {	case 8:		hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;		break;	case 15:		hw->disp_a_ctrl |= DISPPLANE_15_16BPP;		break;	case 16:		hw->disp_a_ctrl |= DISPPLANE_16BPP;		break;	case 24:		hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;		break;	}	hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);	hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);	/* Set CRTC registers. */	hactive = var->xres;	hsync_start = hactive + var->right_margin;	hsync_end = hsync_start + var->hsync_len;	htotal = hsync_end + var->left_margin;	hblank_start = hactive;	hblank_end = htotal;	DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",		hactive, hsync_start, hsync_end, htotal, hblank_start,		hblank_end);	vactive = var->yres;	vsync_start = vactive + var->lower_margin;	vsync_end = vsync_start + var->vsync_len;	vtotal = vsync_end + var->upper_margin;	vblank_start = vactive;	vblank_end = vtotal;	vblank_end = vsync_end + 1;	DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",		vactive, vsync_start, vsync_end, vtotal, vblank_start,		vblank_end);	/* Adjust for register values, and check for overflow. */	hactive--;	if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))		return 1;	hsync_start--;	if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))		return 1;	hsync_end--;	if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))		return 1;	htotal--;	if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))		return 1;	hblank_start--;	if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))		return 1;	hblank_end--;	if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))		return 1;	vactive--;	if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))		return 1;	vsync_start--;	if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))		return 1;	vsync_end--;	if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))		return 1;	vtotal--;	if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))		return 1;	vblank_start--;	if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))		return 1;	vblank_end--;	if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))		return 1;	*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);	*hb = (hblank_start << HBLANKSTART_SHIFT) |	      (hblank_end << HSYNCEND_SHIFT);	*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);	*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);	*vb = (vblank_start << VBLANKSTART_SHIFT) |	      (vblank_end << VSYNCEND_SHIFT);	*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);	*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |	      (vactive << SRC_SIZE_VERT_SHIFT);	/* Start address and stride. */	if (dinfo->pitch)		hw->disp_a_stride = dinfo->pitch;	else		hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;	DBG_MSG("pitch is %d\n", hw->disp_a_stride);	hw->disp_a_base = hw->disp_a_stride * var->yoffset +			  var->xoffset * var->bits_per_pixel / 8;	/* Check stride alignment. */	if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {		WRN_MSG("display stride %d has bad alignment %d\n",			hw->disp_a_stride, STRIDE_ALIGNMENT);		return 1;	}	/* Set the palette to 8-bit mode. */	*pipe_conf &= ~PIPECONF_GAMMA;	return 0;}/* Program a (non-VGA) video mode. */intintelfbhw_program_mode(struct intelfb_info *dinfo,		     const struct intelfb_hwstate *hw, int blank){	int pipe = PIPE_A;	u32 tmp;	const u32 *dpll, *fp0, *fp1, *pipe_conf;	const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;	u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;	u32 hsync_reg, htotal_reg, hblank_reg;	u32 vsync_reg, vtotal_reg, vblank_reg;	u32 src_size_reg;	/* Assume single pipe, display plane A, analog CRT. */	DBG_MSG("intelfbhw_program_mode\n");	/* Disable VGA */	tmp = INREG(VGACNTRL);	tmp |= VGA_DISABLE;	OUTREG(VGACNTRL, tmp);	/* Check whether pipe A or pipe B is enabled. */	if (hw->pipe_a_conf & PIPECONF_ENABLE)		pipe = PIPE_A;	else if (hw->pipe_b_conf & PIPECONF_ENABLE)		pipe = PIPE_B;	dinfo->pipe = pipe;	if (pipe == PIPE_B) {		dpll = &hw->dpll_b;		fp0 = &hw->fpb0;		fp1 = &hw->fpb1;		pipe_conf = &hw->pipe_b_conf;		hs = &hw->hsync_b;		hb = &hw->hblank_b;		ht = &hw->htotal_b;		vs = &hw->vsync_b;		vb = &hw->vblank_b;		vt = &hw->vtotal_b;		ss = &hw->src_size_b;		dpll_reg = DPLL_B;		fp0_reg = FPB0;		fp1_reg = FPB1;		pipe_conf_reg = PIPEBCONF;		hsync_reg = HSYNC_B;		htotal_reg = HTOTAL_B;		hblank_reg = HBLANK_B;		vsync_reg = VSYNC_B;		vtotal_reg = VTOTAL_B;		vblank_reg = VBLANK_B;		src_size_reg = SRC_SIZE_B;	} else {		dpll = &hw->dpll_a;		fp0 = &hw->fpa0;		fp1 = &hw->fpa1;		pipe_conf = &hw->pipe_a_conf;		hs = &hw->hsync_a;		hb = &hw->hblank_a;		ht = &hw->htotal_a;		vs = &hw->vsync_a;		vb = &hw->vblank_a;		vt = &hw->vtotal_a;		ss = &hw->src_size_a;		dpll_reg = DPLL_A;		fp0_reg = FPA0;		fp1_reg = FPA1;		pipe_conf_reg = PIPEACONF;		hsync_reg = HSYNC_A;		htotal_reg = HTOTAL_A;		hblank_reg = HBLANK_A;		vsync_reg = VSYNC_A;		vtotal_reg = VTOTAL_A;		vblank_reg = VBLANK_A;		src_size_reg = SRC_SIZE_A;	}	/* Disable planes A and B. */	tmp = INREG(DSPACNTR);	tmp &= ~DISPPLANE_PLANE_ENABLE;	OUTREG(DSPACNTR, tmp);	tmp = INREG(DSPBCNTR);	tmp &= ~DISPPLANE_PLANE_ENABLE;	OUTREG(DSPBCNTR, tmp);	/* Wait for vblank.  For now, just wait for a 50Hz cycle (20ms)) */	mdelay(20);	/* Disable Sync */	tmp = INREG(ADPA);	tmp &= ~ADPA_DPMS_CONTROL_MASK;	tmp |= ADPA_DPMS_D3;	OUTREG(ADPA, tmp);	/* turn off pipe */	tmp = INREG(pipe_conf_reg);	tmp &= ~PIPECONF_ENABLE;	OUTREG(pipe_conf_reg, tmp);	/* turn off PLL */	tmp = INREG(dpll_reg);	dpll_reg &= ~DPLL_VCO_ENABLE;	OUTREG(dpll_reg, tmp);	/* Set PLL parameters */	OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);	OUTREG(fp0_reg, *fp0);	OUTREG(fp1_reg, *fp1);	/* Set pipe parameters */	OUTREG(hsync_reg, *hs);	OUTREG(hblank_reg, *hb);	OUTREG(htotal_reg, *ht);	OUTREG(vsync_reg, *vs);	OUTREG(vblank_reg, *vb);	OUTREG(vtotal_reg, *vt);	OUTREG(src_size_reg, *ss);		/* Set ADPA */	OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);	/* Enable PLL */	tmp = INREG(dpll_reg);	tmp |= DPLL_VCO_ENABLE;	OUTREG(dpll_reg, tmp);	/* Enable pipe */	OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -