📄 6pack.c
字号:
/* * 6pack.c This module implements the 6pack protocol for kernel-based * devices like TTY. It interfaces between a raw TTY and the * kernel's AX.25 protocol layers. * * Version: @(#)6pack.c 0.3.0 04/07/98 * * Authors: Andreas K鰊sgen <ajk@iehk.rwth-aachen.de> * Changes for SuSE Kernel 2.4.21-99 (stolen from 2.6.0-test8) * to avoid the "resyncing TNC" messages: * Tim Fischer <tim.fischer@onlinehome.de> * * Quite a lot of stuff "stolen" by J鰎g Reuter from slip.c, written by * * Laurence Culhane, <loz@holmes.demon.co.uk> * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org> * */#include <linux/config.h>#include <linux/module.h>#include <asm/system.h>#include <asm/uaccess.h>#include <asm/bitops.h>#include <linux/string.h>#include <linux/mm.h>#include <linux/interrupt.h>#include <linux/in.h>#include <linux/tty.h>#include <linux/errno.h>#include <linux/netdevice.h>#include <linux/timer.h>#include <net/ax25.h>#include <linux/etherdevice.h>#include <linux/skbuff.h>#include <linux/rtnetlink.h>#include <linux/if_arp.h>#include <linux/init.h>#include <linux/ip.h>#include <linux/tcp.h>#define SIXPACK_VERSION "Revision: 0.3.0"/* sixpack priority commands */#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */#define SIXP_TX_URUN 0x48 /* transmit overrun */#define SIXP_RX_ORUN 0x50 /* receive overrun */#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame *//* masks to get certain bits out of the status bytes sent by the TNC */#define SIXP_CMD_MASK 0xC0#define SIXP_CHN_MASK 0x07#define SIXP_PRIO_CMD_MASK 0x80#define SIXP_STD_CMD_MASK 0x40#define SIXP_PRIO_DATA_MASK 0x38#define SIXP_TX_MASK 0x20#define SIXP_RX_MASK 0x10#define SIXP_RX_DCD_MASK 0x18#define SIXP_LEDS_ON 0x78#define SIXP_LEDS_OFF 0x60#define SIXP_CON 0x08#define SIXP_STA 0x10#define SIXP_FOUND_TNC 0xe9#define SIXP_CON_ON 0x68#define SIXP_DCD_MASK 0x08#define SIXP_DAMA_OFF 0/* default level 2 parameters */#define SIXP_TXDELAY (HZ/4) /* in 1 s */#define SIXP_PERSIST 50 /* in 256ths */#define SIXP_SLOTTIME (HZ/10) /* in 1 s */#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s *//* 6pack configuration. */#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */#define SIXP_MTU 256 /* Default MTU */enum sixpack_flags { SIXPF_INUSE, /* Channel in use */ SIXPF_ERROR, /* Parity, etc. error */};struct sixpack { int magic; /* Various fields. */ struct tty_struct *tty; /* ptr to TTY structure */ struct net_device *dev; /* easy for intr handling */ /* These are pointers to the malloc()ed frame buffers. */ unsigned char *rbuff; /* receiver buffer */ int rcount; /* received chars counter */ unsigned char *xbuff; /* transmitter buffer */ unsigned char *xhead; /* pointer to next byte to XMIT */ int xleft; /* bytes left in XMIT queue */ unsigned char raw_buf[4]; unsigned char cooked_buf[400]; unsigned int rx_count; unsigned int rx_count_cooked; /* 6pack interface statistics. */ struct net_device_stats stats; int mtu; /* Our mtu (to spot changes!) */ int buffsize; /* Max buffers sizes */ unsigned long flags; /* Flag values/ mode etc */ unsigned char mode; /* 6pack mode */ /* 6pack stuff */ unsigned char tx_delay; unsigned char persistance; unsigned char slottime; unsigned char duplex; unsigned char led_state; unsigned char status; unsigned char status1; unsigned char status2; unsigned char tx_enable; unsigned char tnc_ok; struct timer_list tx_t; struct timer_list resync_t;};#define AX25_6PACK_HEADER_LEN 0#define SIXPACK_MAGIC 0x5304typedef struct sixpack_ctrl { struct sixpack ctrl; /* 6pack things */ struct net_device dev; /* the device */} sixpack_ctrl_t;static sixpack_ctrl_t **sixpack_ctrls;int sixpack_maxdev = SIXP_NRUNIT; /* Can be overridden with insmod! */MODULE_PARM(sixpack_maxdev, "i");MODULE_PARM_DESC(sixpack_maxdev, "number of 6PACK devices");static void sp_start_tx_timer(struct sixpack *);static void sp_xmit_on_air(unsigned long);static void resync_tnc(unsigned long);static void sixpack_decode(struct sixpack *, unsigned char[], int);static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);static int sixpack_init(struct net_device *dev);static void decode_prio_command(unsigned char, struct sixpack *);static void decode_std_command(unsigned char, struct sixpack *);static void decode_data(unsigned char, struct sixpack *);static int tnc_init(struct sixpack *);/* Find a free 6pack channel, and link in this `tty' line. */static inline struct sixpack *sp_alloc(void){ sixpack_ctrl_t *spp = NULL; int i; for (i = 0; i < sixpack_maxdev; i++) { spp = sixpack_ctrls[i]; if (spp == NULL) break; if (!test_and_set_bit(SIXPF_INUSE, &spp->ctrl.flags)) break; } /* Too many devices... */ if (i >= sixpack_maxdev) return NULL; /* If no channels are available, allocate one */ if (!spp && (sixpack_ctrls[i] = (sixpack_ctrl_t *)kmalloc(sizeof(sixpack_ctrl_t), GFP_KERNEL)) != NULL) { spp = sixpack_ctrls[i]; memset(spp, 0, sizeof(sixpack_ctrl_t)); /* Initialize channel control data */ set_bit(SIXPF_INUSE, &spp->ctrl.flags); spp->ctrl.tty = NULL; sprintf(spp->dev.name, "sp%d", i); spp->dev.base_addr = i; spp->dev.priv = (void *) &spp->ctrl; spp->dev.next = NULL; spp->dev.init = sixpack_init; } if (spp != NULL) { /* register device so that it can be ifconfig'ed */ /* sixpack_init() will be called as a side-effect */ /* SIDE-EFFECT WARNING: sixpack_init() CLEARS spp->ctrl ! */ if (register_netdev(&spp->dev) == 0) { set_bit(SIXPF_INUSE, &spp->ctrl.flags); spp->ctrl.dev = &spp->dev; spp->dev.priv = (void *) &spp->ctrl; SET_MODULE_OWNER(&spp->dev); return &spp->ctrl; } else { clear_bit(SIXPF_INUSE, &spp->ctrl.flags); printk(KERN_WARNING "sp_alloc() - register_netdev() failure.\n"); } } return NULL;}/* Free a 6pack channel. */static inline void sp_free(struct sixpack *sp){ /* Free all 6pack frame buffers. */ if (sp->rbuff) kfree(sp->rbuff); sp->rbuff = NULL; if (sp->xbuff) kfree(sp->xbuff); sp->xbuff = NULL; if (!test_and_clear_bit(SIXPF_INUSE, &sp->flags)) printk(KERN_WARNING "%s: sp_free for already free unit.\n", sp->dev->name);}/* Send one completely decapsulated IP datagram to the IP layer. *//* This is the routine that sends the received data to the kernel AX.25. 'cmd' is the KISS command. For AX.25 data, it is zero. */static void sp_bump(struct sixpack *sp, char cmd){ struct sk_buff *skb; int count; unsigned char *ptr; count = sp->rcount+1; sp->stats.rx_bytes += count; if ((skb = dev_alloc_skb(count)) == NULL) { printk(KERN_DEBUG "%s: memory squeeze, dropping packet.\n", sp->dev->name); sp->stats.rx_dropped++; return; } skb->dev = sp->dev; ptr = skb_put(skb, count); *ptr++ = cmd; /* KISS command */ memcpy(ptr, (sp->cooked_buf)+1, count); skb->mac.raw = skb->data; skb->protocol = htons(ETH_P_AX25); netif_rx(skb); sp->stats.rx_packets++;}/* ----------------------------------------------------------------------- *//* Encapsulate one AX.25 frame and stuff into a TTY queue. */static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len){ unsigned char *p; int actual, count; if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */ printk(KERN_DEBUG "%s: truncating oversized transmit packet!\n", sp->dev->name); sp->stats.tx_dropped++; netif_start_queue(sp->dev); return; } p = icp; if (p[0] > 5) { printk(KERN_DEBUG "%s: invalid KISS command -- dropped\n", sp->dev->name); netif_start_queue(sp->dev); return; } if ((p[0] != 0) && (len > 2)) { printk(KERN_DEBUG "%s: KISS control packet too long -- dropped\n", sp->dev->name); netif_start_queue(sp->dev); return; } if ((p[0] == 0) && (len < 15)) { printk(KERN_DEBUG "%s: bad AX.25 packet to transmit -- dropped\n", sp->dev->name); netif_start_queue(sp->dev); sp->stats.tx_dropped++; return; } count = encode_sixpack(p, (unsigned char *) sp->xbuff, len, sp->tx_delay); sp->tty->flags |= (1 << TTY_DO_WRITE_WAKEUP); switch (p[0]) { case 1: sp->tx_delay = p[1]; return; case 2: sp->persistance = p[1]; return; case 3: sp->slottime = p[1]; return; case 4: /* ignored */ return; case 5: sp->duplex = p[1]; return; } if (p[0] == 0) { /* in case of fullduplex or DAMA operation, we don't take care about the state of the DCD or of any timers, as the determination of the correct time to send is the job of the AX.25 layer. We send immediately after data has arrived. */ if (sp->duplex == 1) { sp->led_state = 0x70; sp->tty->driver.write(sp->tty, 0, &sp->led_state, 1); sp->tx_enable = 1; actual = sp->tty->driver.write(sp->tty, 0, sp->xbuff, count); sp->xleft = count - actual; sp->xhead = sp->xbuff + actual; sp->led_state = 0x60; sp->tty->driver.write(sp->tty, 0, &sp->led_state, 1); } else { sp->xleft = count; sp->xhead = sp->xbuff; sp->status2 = count; if (sp->duplex == 0) sp_start_tx_timer(sp); } }}/* * Called by the TTY driver when there's room for more data. If we have * more packets to send, we send them here. */static void sixpack_write_wakeup(struct tty_struct *tty){ int actual; struct sixpack *sp = (struct sixpack *) tty->disc_data; /* First make sure we're connected. */ if (!sp || sp->magic != SIXPACK_MAGIC || !netif_running(sp->dev)) return; if (sp->xleft <= 0) { /* Now serial buffer is almost free & we can start * transmission of another packet */ sp->stats.tx_packets++; tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP); sp->tx_enable = 0; netif_wake_queue(sp->dev); return; } if (sp->tx_enable == 1) { actual = tty->driver.write(tty, 0, sp->xhead, sp->xleft); sp->xleft -= actual; sp->xhead += actual; }}/* ----------------------------------------------------------------------- *//* Encapsulate an IP datagram and kick it into a TTY queue. */static int sp_xmit(struct sk_buff *skb, struct net_device *dev){ struct sixpack *sp = (struct sixpack *) dev->priv; /* We were not busy, so we are now... :-) */ netif_stop_queue(dev); sp->stats.tx_bytes += skb->len; sp_encaps(sp, skb->data, skb->len); dev_kfree_skb(skb); return 0;}/* perform the persistence/slottime algorithm for CSMA access. If the persistence check was successful, write the data to the serial driver. Note that in case of DAMA operation, the data is not sent here. */static void sp_xmit_on_air(unsigned long channel){ struct sixpack *sp = (struct sixpack *) channel; int actual; static unsigned char random; random = random * 17 + 41; if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistance)) { sp->led_state = 0x70; sp->tty->driver.write(sp->tty, 0, &sp->led_state, 1); sp->tx_enable = 1; actual = sp->tty->driver.write(sp->tty, 0, sp->xbuff, sp->status2); sp->xleft -= actual; sp->xhead += actual; sp->led_state = 0x60; sp->tty->driver.write(sp->tty, 0, &sp->led_state, 1); sp->status2 = 0; } else sp_start_tx_timer(sp);}/* Return the frame type ID */static int sp_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len){#ifdef CONFIG_INET if (type != htons(ETH_P_AX25)) return ax25_encapsulate(skb, dev, type, daddr, saddr, len);#endif return 0;}static int sp_rebuild_header(struct sk_buff *skb){#ifdef CONFIG_INET return ax25_rebuild_header(skb);#else return 0;#endif}/* Open the low-level part of the 6pack channel. */static int sp_open(struct net_device *dev){ struct sixpack *sp = (struct sixpack *) dev->priv; unsigned long len; if (sp->tty == NULL) return -ENODEV; /* * Allocate the 6pack frame buffers: * * rbuff Receive buffer. * xbuff Transmit buffer. */ /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */ len = dev->mtu * 2; if ((sp->rbuff = kmalloc(len + 4, GFP_KERNEL)) == NULL) return -ENOMEM; if ((sp->xbuff = kmalloc(len + 4, GFP_KERNEL)) == NULL) { kfree(sp->rbuff); return -ENOMEM; } sp->mtu = AX25_MTU + 73; sp->buffsize = len; sp->rcount = 0; sp->rx_count = 0; sp->rx_count_cooked = 0; sp->xleft = 0; sp->flags &= (1 << SIXPF_INUSE); /* Clear ESCAPE & ERROR flags */ sp->duplex = 0; sp->tx_delay = SIXP_TXDELAY; sp->persistance = SIXP_PERSIST; sp->slottime = SIXP_SLOTTIME; sp->led_state = 0x60; sp->status = 1; sp->status1 = 1; sp->status2 = 0; sp->tnc_ok = 0; sp->tx_enable = 0; netif_start_queue(dev); init_timer(&sp->tx_t); init_timer(&sp->resync_t); return 0;}/* Close the low-level part of the 6pack channel. */static int sp_close(struct net_device *dev){ struct sixpack *sp = (struct sixpack *) dev->priv; if (sp->tty == NULL) return -EBUSY; sp->tty->flags &= ~(1 << TTY_DO_WRITE_WAKEUP); netif_stop_queue(dev); return 0;}static int sixpack_receive_room(struct tty_struct *tty){ return 65536; /* We can handle an infinite amount of data. :-) */}/* !!! receive state machine *//* * Handle the 'receiver data ready' interrupt. * This function is called by the 'tty_io' module in the kernel when * a block of 6pack data has been received, which can now be decapsulated * and sent on to some IP layer for further processing. */static void sixpack_receive_buf(struct tty_struct *tty, const unsigned char *cp, char *fp, int count){ unsigned char buf[512]; unsigned long flags; int count1; struct sixpack *sp = (struct sixpack *) tty->disc_data; if (!sp || sp->magic != SIXPACK_MAGIC || !netif_running(sp->dev) || !count) return; save_flags(flags); cli(); memcpy(buf, cp, count<sizeof(buf)? count:sizeof(buf)); restore_flags(flags); /* Read the characters out of the buffer */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -