📄 process.c
字号:
al = (regs->regs[35]) & 0xffffffff; bh = (regs->regs[36]) >> 32; bl = (regs->regs[36]) & 0xffffffff; ch = (regs->regs[37]) >> 32; cl = (regs->regs[37]) & 0xffffffff; printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[38]) >> 32; al = (regs->regs[38]) & 0xffffffff; bh = (regs->regs[39]) >> 32; bl = (regs->regs[39]) & 0xffffffff; ch = (regs->regs[40]) >> 32; cl = (regs->regs[40]) & 0xffffffff; printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[41]) >> 32; al = (regs->regs[41]) & 0xffffffff; bh = (regs->regs[42]) >> 32; bl = (regs->regs[42]) & 0xffffffff; ch = (regs->regs[43]) >> 32; cl = (regs->regs[43]) & 0xffffffff; printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[44]) >> 32; al = (regs->regs[44]) & 0xffffffff; bh = (regs->regs[45]) >> 32; bl = (regs->regs[45]) & 0xffffffff; ch = (regs->regs[46]) >> 32; cl = (regs->regs[46]) & 0xffffffff; printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[47]) >> 32; al = (regs->regs[47]) & 0xffffffff; bh = (regs->regs[48]) >> 32; bl = (regs->regs[48]) & 0xffffffff; ch = (regs->regs[49]) >> 32; cl = (regs->regs[49]) & 0xffffffff; printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[50]) >> 32; al = (regs->regs[50]) & 0xffffffff; bh = (regs->regs[51]) >> 32; bl = (regs->regs[51]) & 0xffffffff; ch = (regs->regs[52]) >> 32; cl = (regs->regs[52]) & 0xffffffff; printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[53]) >> 32; al = (regs->regs[53]) & 0xffffffff; bh = (regs->regs[54]) >> 32; bl = (regs->regs[54]) & 0xffffffff; ch = (regs->regs[55]) >> 32; cl = (regs->regs[55]) & 0xffffffff; printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[56]) >> 32; al = (regs->regs[56]) & 0xffffffff; bh = (regs->regs[57]) >> 32; bl = (regs->regs[57]) & 0xffffffff; ch = (regs->regs[58]) >> 32; cl = (regs->regs[58]) & 0xffffffff; printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[59]) >> 32; al = (regs->regs[59]) & 0xffffffff; bh = (regs->regs[60]) >> 32; bl = (regs->regs[60]) & 0xffffffff; ch = (regs->regs[61]) >> 32; cl = (regs->regs[61]) & 0xffffffff; printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[62]) >> 32; al = (regs->regs[62]) & 0xffffffff; bh = (regs->tregs[0]) >> 32; bl = (regs->tregs[0]) & 0xffffffff; ch = (regs->tregs[1]) >> 32; cl = (regs->tregs[1]) & 0xffffffff; printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[2]) >> 32; al = (regs->tregs[2]) & 0xffffffff; bh = (regs->tregs[3]) >> 32; bl = (regs->tregs[3]) & 0xffffffff; ch = (regs->tregs[4]) >> 32; cl = (regs->tregs[4]) & 0xffffffff; printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[5]) >> 32; al = (regs->tregs[5]) & 0xffffffff; bh = (regs->tregs[6]) >> 32; bl = (regs->tregs[6]) & 0xffffffff; ch = (regs->tregs[7]) >> 32; cl = (regs->tregs[7]) & 0xffffffff; printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); /* * If we're in kernel mode, dump the stack too.. */ if (!user_mode(regs)) { extern void show_task(unsigned long *sp); unsigned long sp = regs->regs[15] & 0xffffffff; show_task((unsigned long *)sp); }}struct task_struct * alloc_task_struct(void){ /* Get task descriptor pages */ return (struct task_struct *) __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));}void free_task_struct(struct task_struct *p){ free_pages((unsigned long) p, get_order(THREAD_SIZE));}/* * Create a kernel thread *//* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be free'd until both the parent and the child have exited. */int arch_kernel_thread(int (*fn)(void *), void * arg, unsigned long flags){ /* A bit less processor dependent than older sh ... */ unsigned int reply;static __inline__ _syscall2(int,clone,unsigned long,flags,unsigned long,newsp)static __inline__ _syscall1(int,exit,int,ret) reply = clone(flags | CLONE_VM, 0); if (!reply) { /* Child */ reply = exit(fn(arg)); } return reply;}/* * Free current thread data structures etc.. */void exit_thread(void){ /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC. The SH-5 FPU save/restore approach relies on last_task_used_math pointing to a live task_struct. When another task tries to use the FPU for the 1st time, the FPUDIS trap handling (see arch/sh64/kernel/fpu.c) will save the existing FPU state to the FP regs field within last_task_used_math before re-loading the new task's FPU state (or initialising it if the FPU has been used before). So if last_task_used_math is stale, and its page has already been re-allocated for another use, the consequences are rather grim. Unless we null it here, there is no other path through which it would get safely nulled. */#ifndef CONFIG_NOFPU_SUPPORT if (last_task_used_math == current) { last_task_used_math = NULL; }#endif}void flush_thread(void){ /* As far as I can tell, this function isn't actually called from anywhere. So why does it have a non-null body for most architectures?? -- RPC */ /* Look closer, this is used in fs/exec.c by flush_old_exec() which is used by binfmt_elf and friends to remove leftover traces of the previously running executable. -- PFM */#ifndef CONFIG_NOFPU_SUPPORT if (last_task_used_math == current) { last_task_used_math = NULL; }#endif /* if we are a kernel thread, about to change to user thread, * update kreg */ if(current->thread.kregs==&fake_swapper_regs) { current->thread.kregs= ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1); }}void release_thread(struct task_struct *dead_task){ /* do nothing */}/* Fill in the fpu structure for a core dump.. */int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu){#ifndef CONFIG_NOFPU_SUPPORT int fpvalid; struct task_struct *tsk = current; fpvalid = tsk->used_math; if (fpvalid) { if (current == last_task_used_math) { grab_fpu(); fpsave(&tsk->thread.fpu.hard); release_fpu(); last_task_used_math = 0; regs->sr |= SR_FD; } memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu)); } return fpvalid;#else return 0; /* Task didn't use the fpu at all. */#endif}asmlinkage void ret_from_fork(void);int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs){ struct pt_regs *childregs; unsigned long long se; /* Sign extension */#ifndef CONFIG_NOFPU_SUPPORT if(last_task_used_math == current) { grab_fpu(); fpsave(¤t->thread.fpu.hard); release_fpu(); last_task_used_math = NULL; regs->sr |= SR_FD; }#endif childregs = ((struct pt_regs *)(THREAD_SIZE + (unsigned long) p)) - 1; *childregs = *regs; if (user_mode(regs)) { childregs->regs[15] = usp; p->thread.kregs = childregs; } else { childregs->regs[15] = (unsigned long)p+THREAD_SIZE; p->thread.kregs = &fake_swapper_regs; } childregs->regs[9] = 0; /* Set return value for child */ childregs->sr |= SR_FD; /* Invalidate FPU flag */ p->thread.sp = (unsigned long) childregs; p->thread.pc = (unsigned long) ret_from_fork; /* * Sign extend the edited stack. * Note that thread.pc and thread.pc will stay * 32-bit wide and context switch must take care * of NEFF sign extension. */ se = childregs->regs[15]; se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se; childregs->regs[15] = se; return 0;}/* * fill in the user structure for a core dump.. */void dump_thread(struct pt_regs * regs, struct user * dump){ dump->magic = CMAGIC; dump->start_code = current->mm->start_code; dump->start_data = current->mm->start_data; dump->start_stack = regs->regs[15] & ~(PAGE_SIZE - 1); dump->u_tsize = (current->mm->end_code - dump->start_code) >> PAGE_SHIFT; dump->u_dsize = (current->mm->brk + (PAGE_SIZE-1) - dump->start_data) >> PAGE_SHIFT; dump->u_ssize = (current->mm->start_stack - dump->start_stack + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Debug registers will come here. */ dump->regs = *regs; dump->u_fpvalid = dump_fpu(regs, &dump->fpu);}/* * switch_to(x,y) should switch tasks from x to y. * */struct task_struct * __switch_to(struct task_struct *prev, struct task_struct *next){ /* * Restore the kernel mode register * KCR0 = __c17 */ asm volatile("putcon %0, " __c17 "\n" : /* no output */ :"r" (next)); return prev;}asmlinkage int sys_fork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs){ return do_fork(SIGCHLD, pregs->regs[15], pregs,0);}asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs){ if (!newsp) newsp = pregs->regs[15]; return do_fork(clone_flags, newsp, pregs,0);}/* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */asmlinkage int sys_vfork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs){ return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs,0);}/* * sys_execve() executes a new program. */asmlinkage int sys_execve(char *ufilename, char **uargv, char **uenvp, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs){ int error; char *filename; lock_kernel(); filename = getname(ufilename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, uargv, uenvp, pregs); if (error == 0) current->ptrace &= ~PT_DTRACE; putname(filename);out: unlock_kernel(); return error;}/* * These bracket the sleeping functions.. */extern void scheduling_functions_start_here(void);extern void scheduling_functions_end_here(void);extern void interruptible_sleep_on(wait_queue_head_t *q);#define first_sched ((unsigned long) scheduling_functions_start_here)#define mid_sched ((unsigned long) interruptible_sleep_on)#define last_sched ((unsigned long) scheduling_functions_end_here)unsigned long get_wchan(struct task_struct *p){ unsigned long schedule_frame; unsigned long pc; if (!p || p == current || p->state == TASK_RUNNING) return 0; /* * The same comment as on the Alpha applies here, too ... */ pc = thread_saved_pc(&p->thread); if (pc >= first_sched && pc < last_sched) { schedule_frame = (long) p->thread.sp; /* Should we unwind schedule_timeout() ? */ if (pc < mid_sched) /* according to disasm: ** 48 bytes in case of RH toolchain */ schedule_frame += 48; /* ** Unwind schedule(). According to disasm: ** 72 bytes in case of RH toolchain ** plus 304 bytes of switch_to additional frame. */ schedule_frame += 72 + 304;#ifdef CS_SAVE_ALL schedule_frame += 256;#endif /* * schedule_frame now according to SLEEP_ON_VAR. * Bad thing is that we have no trace of the waiting * address (the classical WCHAN). SLEEP_ON_VAR should * have saved q. From the linked list only we can't get * the object and first parameter is not saved on stack * by the ABI. The best we can tell is who called the * *sleep_on* by returning LINK, which is saved at * offset 64 on all flavours. */ return (unsigned long)((unsigned long *)schedule_frame)[16]; } return pc;}/* Provide a /proc/asids file that lists out the ASIDs currently associated with the processes. (If the DM.PC register is examined through the debug link, this shows ASID + PC. To make use of this, the PID->ASID relationship needs to be known. This is primarily for debugging.) */#if defined(CONFIG_SH64_PROC_ASIDS)#include <linux/init.h>#include <linux/proc_fs.h>static intasids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data){ int len=0; struct task_struct *p; read_lock(&tasklist_lock); for_each_task(p) { int pid = p->pid; struct mm_struct *mm; if (!pid) continue; mm = p->mm; if (mm) { unsigned long asid, context; context = mm->context; asid = (context & 0xff); len += sprintf(buf+len, "%5d : %02x\n", pid, asid); } else { len += sprintf(buf+len, "%5d : (none)\n", pid); } } read_unlock(&tasklist_lock); *eof = 1; return len;}static int __init register_proc_asids(void){ create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL); return 0;}__initcall(register_proc_asids);#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -