⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rtasd.c

📁 linux-2.4.29操作系统的源码
💻 C
字号:
/* * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Communication to userspace based on kernel/printk.c */#include <linux/types.h>#include <linux/errno.h>#include <linux/sched.h>#include <linux/kernel.h>#include <linux/poll.h>#include <linux/proc_fs.h>#include <linux/init.h>#include <linux/vmalloc.h>#include <linux/spinlock.h>#include <asm/uaccess.h>#include <asm/io.h>#include <asm/rtas.h>#include <asm/prom.h>#include <asm/nvram.h>#include <asm/atomic.h>#if 0#define DEBUG(A...)	printk(KERN_ERR A)#else#define DEBUG(A...)#endifstatic spinlock_t log_lock = SPIN_LOCK_UNLOCKED;DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);static char *rtas_log_buf;static unsigned long rtas_log_start;static unsigned long rtas_log_size;static int surveillance_timeout = -1;static unsigned int rtas_event_scan_rate;static unsigned int rtas_error_log_max;static unsigned int rtas_error_log_buffer_max;extern struct proc_dir_entry *proc_ppc64_root;extern struct proc_dir_entry *rtas_proc_dir;extern spinlock_t proc_ppc64_lock;extern volatile int no_more_logging;volatile int error_log_cnt = 0;/* * Since we use 32 bit RTAS, the physical address of this must be below * 4G or else bad things happen. Allocate this in the kernel data and * make it big enough. */static unsigned char logdata[RTAS_ERROR_LOG_MAX];/* To see this info, grep RTAS /var/log/messages and each entry * will be collected together with obvious begin/end. * There will be a unique identifier on the begin and end lines. * This will persist across reboots. * * format of error logs returned from RTAS: * bytes 	(size)	: contents * -------------------------------------------------------- * 0-7		(8)	: rtas_error_log * 8-47		(40) 	: extended info * 48-51	(4)	: vendor id * 52-1023 (vendor specific) : location code and debug data */static void printk_log_rtas(char *buf, int len){	int i,j,n;	int perline = 16;	char buffer[64];	char * str = "RTAS event";	printk(RTAS_ERR "%d -------- %s begin --------\n", error_log_cnt, str);	/*	 * Print perline bytes on each line, each line will start	 * with RTAS and a changing number, so syslogd will	 * print lines that are otherwise the same.  Separate every	 * 4 bytes with a space.	 */	for (i=0; i < len; i++) {		j = i % perline;		if (j == 0) {			memset(buffer, 0, sizeof(buffer));			n = sprintf(buffer, "RTAS %d:", i/perline);		}		if ((i % 4) == 0)			n += sprintf(buffer+n, " ");		n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);		if (j == (perline-1))			printk(KERN_ERR "%s\n", buffer);	}	if ((i % perline) != 0)		printk(KERN_ERR "%s\n", buffer);	printk(RTAS_ERR "%d -------- %s end ----------\n", error_log_cnt, str);}static int log_rtas_len(char * buf){	int len;	struct rtas_error_log *err;	/* rtas fixed header */	len = 8;	err = (struct rtas_error_log *)buf;	if (err->extended_log_length) {		/* extended header */		len += err->extended_log_length;		if (len > RTAS_ERROR_LOG_MAX)			len = RTAS_ERROR_LOG_MAX;	}	return len;}/* * First write to nvram, if fatal error, that is the only * place we log the info.  The error will be picked up * on the next reboot by rtasd.  If not fatal, run the * method for the type of error.  Currently, only RTAS * errors have methods implemented, but in the future * there might be a need to store data in nvram before a * call to panic().*/void pSeries_log_error(char *buf, unsigned int err_type, int fatal){	unsigned long offset;	unsigned long s;	int len = 0;	DEBUG("logging event\n");	if (buf == NULL)		return;	spin_lock_irqsave(&log_lock, s);	/* get length and increase count */	switch (err_type & ERR_TYPE_MASK) {	case ERR_TYPE_RTAS_LOG:		len = log_rtas_len(buf);		if (!(err_type & ERR_FLAG_BOOT))			error_log_cnt++;		break;	case ERR_TYPE_KERNEL_PANIC:	default:		spin_unlock_irqrestore(&log_lock, s);		return;	}	/* Write error to NVRAM */	if (!no_more_logging && !(err_type & ERR_FLAG_BOOT)) {		write_error_log_nvram(buf, len, err_type);	}	/* Check to see if we need to or have stopped logging */	if (fatal || no_more_logging) {		no_more_logging = 1;		spin_unlock_irqrestore(&log_lock, s);		return;	}	/* call type specific method for error */	switch (err_type & ERR_TYPE_MASK) {	case ERR_TYPE_RTAS_LOG:		/* put into syslog and error_log file */		printk_log_rtas(buf, len);		offset = rtas_error_log_buffer_max *			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);		/* First copy over sequence number */		memcpy(&rtas_log_buf[offset], &error_log_cnt, sizeof(int));		/* Second copy over error log data */		offset += sizeof(int);		memcpy(&rtas_log_buf[offset], buf, len);		if (rtas_log_size < LOG_NUMBER)			rtas_log_size += 1;		else			rtas_log_start += 1;		spin_unlock_irqrestore(&log_lock, s);		wake_up_interruptible(&rtas_log_wait);		break;	case ERR_TYPE_KERNEL_PANIC:	default:		spin_unlock_irqrestore(&log_lock, s);		return;	}}static int rtas_log_open(struct inode * inode, struct file * file){	return 0;}static int rtas_log_release(struct inode * inode, struct file * file){	return 0;}/* This will check if all events are logged, if they are then, we * know that we can safely clear the events in NVRAM. * Next we'll sit and wait for something else to log. */static ssize_t rtas_log_read(struct file * file, char * buf,			 size_t count, loff_t *ppos){	int error;	char *tmp;	unsigned long s;	unsigned long offset;	if (!buf || count < rtas_error_log_buffer_max)		return -EINVAL;	count = rtas_error_log_buffer_max;	error = verify_area(VERIFY_WRITE, buf, count);	if (error)		return -EFAULT;	tmp = kmalloc(count, GFP_KERNEL);	if (!tmp)		return -ENOMEM;	spin_lock_irqsave(&log_lock, s);	/* if it's 0, then we know we got the last one (the one in NVRAM) */	if (rtas_log_size == 0 && !no_more_logging)		clear_error_log_nvram();	spin_unlock_irqrestore(&log_lock, s);	error = wait_event_interruptible(rtas_log_wait, rtas_log_size);	if (error)		goto out;	spin_lock_irqsave(&log_lock, s);	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);	memcpy(tmp, &rtas_log_buf[offset], count);	rtas_log_start += 1;	rtas_log_size -= 1;	spin_unlock_irqrestore(&log_lock, s);	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;out:	kfree(tmp);	return error;}static unsigned int rtas_log_poll(struct file *file, poll_table * wait){	poll_wait(file, &rtas_log_wait, wait);	if (rtas_log_size)		return POLLIN | POLLRDNORM;	return 0;}struct file_operations proc_rtas_log_operations = {	.read =		rtas_log_read,	.poll =		rtas_log_poll,	.open =		rtas_log_open,	.release =	rtas_log_release,};static int enable_surveillance(int timeout){	int error;	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, SURVEILLANCE_TOKEN,			0, timeout);	if (error) {		printk(KERN_ERR "rtasd: could not enable surveillance\n");		return -1;	}	return 0;}static int get_eventscan_parms(void){	struct device_node *node;	int *ip;	node = find_path_device("/rtas");	ip = (int *)get_property(node, "rtas-event-scan-rate", NULL);	if (ip == NULL) {		printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n");		return -1;	}	rtas_event_scan_rate = *ip;	DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate);	ip = (int *)get_property(node, "rtas-error-log-max", NULL);	if (ip == NULL) {		printk(KERN_ERR "rtasd: no rtas-error-log-max\n");		return -1;	}	rtas_error_log_max = *ip;	DEBUG("rtas-error-log-max %d\n", rtas_error_log_max);	if (rtas_error_log_max > RTAS_ERROR_LOG_MAX) {		printk(KERN_ERR "rtasd: truncated error log from %d to %d bytes\n", rtas_error_log_max, RTAS_ERROR_LOG_MAX);		rtas_error_log_max = RTAS_ERROR_LOG_MAX;	}	/* Make room for the sequence number */	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);	return 0;}extern long sys_sched_get_priority_max(int policy);static int rtasd(void *unused){	unsigned int err_type;	unsigned long s;	int cpu = 0;	int error;	int first_pass = 1;	int event_scan = rtas_token("event-scan");	int rc;	if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1)		goto error;	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);	if (!rtas_log_buf) {		printk(KERN_ERR "rtasd: no memory\n");		goto error;	}	no_more_logging = 0;	DEBUG("will sleep for %d jiffies\n", (HZ*60/rtas_event_scan_rate) / 2);	daemonize();	sigfillset(&current->blocked);	sprintf(current->comm, "rtasd");	/* Rusty unreal time task */	current->policy = SCHED_FIFO;	current->nice = sys_sched_get_priority_max(SCHED_FIFO) + 1;	cpu = 0;	current->cpus_allowed = 1UL << cpu_logical_map(cpu);	schedule();	/* See if we have any error stored in NVRAM */	memset(logdata, 0, rtas_error_log_max);	rc = read_error_log_nvram(logdata, rtas_error_log_max, &err_type);	if (!rc) {		if (err_type != ERR_FLAG_ALREADY_LOGGED) {			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);		}	}	while(1) {		do {			memset(logdata, 0, rtas_error_log_max);			error = rtas_call(event_scan, 4, 1, NULL,					RTAS_EVENT_SCAN_ALL_EVENTS, 0,					__pa(logdata), rtas_error_log_max);			if (error == -1) {				printk(KERN_ERR "event-scan failed\n");				break;			}			if (error == 0)				pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);		} while(error == 0);		DEBUG("watchdog scheduled on cpu %d\n", smp_processor_id());		cpu++;		if (cpu >= smp_num_cpus) {			if (first_pass && (surveillance_timeout != -1)) {				DEBUG("enabling surveillance\n");				if (enable_surveillance(surveillance_timeout))					goto error_vfree;				DEBUG("surveillance enabled\n");			}			first_pass = 0;			cpu = 0;		}		current->cpus_allowed = 1UL << cpu_logical_map(cpu);		/* Check all cpus for pending events before sleeping*/		set_current_state(TASK_INTERRUPTIBLE);		schedule_timeout(first_pass ? HZ : (HZ*60/rtas_event_scan_rate) / 2);	}error_vfree:	vfree(rtas_log_buf);error:	/* Should delete proc entries */	return -EINVAL;}static int __init rtas_init(void){	int ret = 0;	struct proc_dir_entry *entry;	spin_lock(&proc_ppc64_lock);	if (proc_ppc64_root == NULL) {		proc_ppc64_root = proc_mkdir("ppc64", 0);		if (!proc_ppc64_root) {			spin_unlock(&proc_ppc64_lock);			return -EINVAL;		}	}	spin_unlock(&proc_ppc64_lock);	if (rtas_proc_dir == NULL) {		rtas_proc_dir = proc_mkdir("rtas", proc_ppc64_root);	}	if (rtas_proc_dir == NULL) {		printk(KERN_ERR "Failed to create /proc/ppc64/rtas in rtas_init\n");		ret = -EINVAL;	} else {		entry = create_proc_entry("error_log", S_IRUSR, rtas_proc_dir);		if (entry)			entry->proc_fops = &proc_rtas_log_operations;		else {			printk(KERN_ERR "Failed to create rtas/error_log proc entry\n");			ret = -EINVAL;		}	}	if (kernel_thread(rtasd, 0, CLONE_FS) < 0) {		printk(KERN_ERR "Failed to start RTAS daemon\n");		ret = -EINVAL;	}	printk(KERN_ERR "RTAS daemon started\n");	return ret;}static int __init surveillance_setup(char *str){	int i;	if (get_option(&str,&i)) {		if (i >= 0 && i <= 255)			surveillance_timeout = i;	}	return 1;}__initcall(rtas_init);__setup("surveillance=", surveillance_setup);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -