📄 init.c
字号:
if (impl_va_bits < 51 || impl_va_bits > 61) panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1); /* place the VMLPT at the end of each page-table mapped region: */ pta = POW2(61) - POW2(vmlpt_bits); if (POW2(mapped_space_bits) >= pta) panic("mm/init: overlap between virtually mapped linear page table and " "mapped kernel space!"); /* * Set the (virtually mapped linear) page table address. Bit * 8 selects between the short and long format, bits 2-7 the * size of the table, and bit 0 whether the VHPT walker is * enabled. */ ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT); ia64_tlb_init();#ifdef CONFIG_IA64_MCA cpu = smp_processor_id(); /* mca handler uses cr.lid as key to pick the right entry */ ia64_mca_tlb_list[cpu].cr_lid = ia64_get_lid(); /* insert this percpu data information into our list for MCA recovery purposes */ ia64_mca_tlb_list[cpu].percpu_paddr = pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)); /* Also save per-cpu tlb flush recipe for use in physical mode mca handler */ ia64_mca_tlb_list[cpu].ptce_base = local_cpu_data->ptce_base; ia64_mca_tlb_list[cpu].ptce_count[0] = local_cpu_data->ptce_count[0]; ia64_mca_tlb_list[cpu].ptce_count[1] = local_cpu_data->ptce_count[1]; ia64_mca_tlb_list[cpu].ptce_stride[0] = local_cpu_data->ptce_stride[0]; ia64_mca_tlb_list[cpu].ptce_stride[1] = local_cpu_data->ptce_stride[1];#endif}static intcreate_mem_map_page_table (u64 start, u64 end, void *arg){ unsigned long address, start_page, end_page, next_blk_page; unsigned long blk_start; struct page *map_start, *map_end; int node=0; pgd_t *pgd; pmd_t *pmd; pte_t *pte; /* should we use platform_map_nr here? */ map_start = vmem_map + MAP_NR_DENSE(start); map_end = vmem_map + MAP_NR_DENSE(end); start_page = (unsigned long) map_start & PAGE_MASK; end_page = PAGE_ALIGN((unsigned long) map_end); /* force the first iteration to get node id */ blk_start = start; next_blk_page = 0; for (address = start_page; address < end_page; address += PAGE_SIZE) { /* if we went across a node boundary, get new nid */ if (address >= next_blk_page) { struct page *map_next_blk; node = paddr_to_nid(__pa(blk_start)); /* get end addr of this memblk as next blk_start */ blk_start = (unsigned long) __va(min(end, memblk_endpaddr(__pa(blk_start)))); map_next_blk = vmem_map + MAP_NR_DENSE(blk_start); next_blk_page = PAGE_ALIGN((unsigned long) map_next_blk); } pgd = pgd_offset_k(address); if (pgd_none(*pgd)) pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); pmd = pmd_offset(pgd, address); if (pmd_none(*pmd)) pmd_populate(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)); pte = pte_offset(pmd, address); if (pte_none(*pte)) set_pte(pte, mk_pte_phys(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)), PAGE_KERNEL)); } return 0;}struct memmap_init_callback_data { memmap_init_callback_t *memmap_init; struct page *start; struct page *end; int zone; int highmem;};struct memmap_count_callback_data { int node; unsigned long num_physpages; unsigned long num_dma_physpages; unsigned long min_pfn; unsigned long max_pfn;} cdata;static intvirtual_memmap_init (u64 start, u64 end, void *arg){ struct memmap_init_callback_data *args; struct page *map_start, *map_end; args = (struct memmap_init_callback_data *) arg; /* Should we use platform_map_nr here? */ map_start = mem_map + MAP_NR_DENSE(start); map_end = mem_map + MAP_NR_DENSE(end); if (map_start < args->start) map_start = args->start; if (map_end > args->end) map_end = args->end; /* * We have to initialize "out of bounds" struct page elements * that fit completely on the same pages that were allocated * for the "in bounds" elements because they may be referenced * later (and found to be "reserved"). */ map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page); map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end) / sizeof(struct page)); if (map_start < map_end) (*args->memmap_init)(map_start, map_end, args->zone, page_to_phys(map_start), args->highmem); return 0;}unsigned longarch_memmap_init (memmap_init_callback_t *memmap_init, struct page *start, struct page *end, int zone, unsigned long start_paddr, int highmem){ if (!vmem_map) memmap_init(start,end,zone,page_to_phys(start),highmem); else { struct memmap_init_callback_data args; args.memmap_init = memmap_init; args.start = start; args.end = end; args.zone = zone; args.highmem = highmem; efi_memmap_walk(virtual_memmap_init, &args); } return page_to_phys(end-1) + PAGE_SIZE;;}intia64_page_valid (struct page *page){ char byte; return (__get_user(byte, (char *) page) == 0) && (__get_user(byte, (char *) (page + 1) - 1) == 0);}#define GRANULEROUNDDOWN(n) ((n) & ~(IA64_GRANULE_SIZE-1))#define GRANULEROUNDUP(n) (((n)+IA64_GRANULE_SIZE-1) & ~(IA64_GRANULE_SIZE-1))#define ORDERROUNDDOWN(n) ((n) & ~((PAGE_SIZE<<MAX_ORDER)-1))static intcount_pages (u64 start, u64 end, int node){ start = __pa(start); end = __pa(end); if (node == cdata.node) { cdata.num_physpages += (end - start) >> PAGE_SHIFT; if (start <= __pa(MAX_DMA_ADDRESS)) cdata.num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >> PAGE_SHIFT; start = GRANULEROUNDDOWN(__pa(start)); start = ORDERROUNDDOWN(start); end = GRANULEROUNDUP(__pa(end)); cdata.max_pfn = max(cdata.max_pfn, end >> PAGE_SHIFT); cdata.min_pfn = min(cdata.min_pfn, start >> PAGE_SHIFT); } return 0;}static intfind_largest_hole(u64 start, u64 end, void *arg){ u64 *max_gap = arg; static u64 last_end = PAGE_OFFSET; /* NOTE: this algorithm assumes efi memmap table is ordered */ if (*max_gap < (start - last_end)) *max_gap = start - last_end; last_end = end; return 0;}/* * Set up the page tables. */voidpaging_init (void){ unsigned long max_dma; unsigned long zones_size[MAX_NR_ZONES]; unsigned long zholes_size[MAX_NR_ZONES]; unsigned long max_gap; int node; /* initialize mem_map[] */ max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; max_gap = 0; efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); for (node=0; node < numnodes; node++) { memset(zones_size, 0, sizeof(zones_size)); memset(zholes_size, 0, sizeof(zholes_size)); memset(&cdata, 0, sizeof(cdata)); cdata.node = node; cdata.min_pfn = ~0; efi_memmap_walk(filter_rsvd_memory, count_pages); num_dma_physpages += cdata.num_dma_physpages; num_physpages += cdata.num_physpages; if (cdata.min_pfn >= max_dma) { zones_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn; zholes_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn - cdata.num_physpages; } else if (cdata.max_pfn < max_dma) { zones_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn; zholes_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn - cdata.num_dma_physpages; } else { zones_size[ZONE_DMA] = max_dma - cdata.min_pfn; zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - cdata.num_dma_physpages; zones_size[ZONE_NORMAL] = cdata.max_pfn - max_dma; zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (cdata.num_physpages - cdata.num_dma_physpages); } if (numnodes == 1 && max_gap < LARGE_GAP) { vmem_map = (struct page *)0; zones_size[ZONE_DMA] += cdata.min_pfn; zholes_size[ZONE_DMA] += cdata.min_pfn; free_area_init_core(0, NODE_DATA(node), &mem_map, zones_size, 0, zholes_size, NULL); } else { /* allocate virtual mem_map */ if (node == 0) { unsigned long map_size; map_size = PAGE_ALIGN(max_low_pfn*sizeof(struct page)); vmalloc_end -= map_size; mem_map = vmem_map = (struct page *) vmalloc_end; efi_memmap_walk(create_mem_map_page_table, 0); printk(KERN_INFO "Virtual mem_map starts at 0x%p\n", mem_map); } free_area_init_node(node, NODE_DATA(node), vmem_map+cdata.min_pfn, zones_size, cdata.min_pfn<<PAGE_SHIFT, zholes_size); } } zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));}static intcount_reserved_pages (u64 start, u64 end, void *arg){ unsigned long num_reserved = 0; struct page *pg; for (pg = virt_to_page((void *)start); pg < virt_to_page((void *)end); ++pg) if (PageReserved(pg)) ++num_reserved; reserved_pages += num_reserved; return 0;}voidmem_init (void){ extern char __start_gate_section[]; long codesize, datasize, initsize; unsigned long num_pgt_pages; pg_data_t *pgdat;#ifdef CONFIG_PCI /* * This needs to be called _after_ the command line has been parsed but _before_ * any drivers that may need the PCI DMA interface are initialized or bootmem has * been freed. */ platform_pci_dma_init();#endif if (!mem_map) BUG(); max_mapnr = max_low_pfn; high_memory = __va(max_low_pfn * PAGE_SIZE); for_each_pgdat(pgdat) totalram_pages += free_all_bootmem_node(pgdat); reserved_pages = 0; efi_memmap_walk(filter_rsvd_memory, count_reserved_pages); codesize = (unsigned long) &_etext - (unsigned long) &_stext; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10), num_physpages << (PAGE_SHIFT - 10), codesize >> 10, reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); /* * Allow for enough (cached) page table pages so that we can map the entire memory * at least once. Each task also needs a couple of page tables pages, so add in a * fudge factor for that (don't use "threads-max" here; that would be wrong!). * Don't allow the cache to be more than 10% of total memory, though. */# define NUM_TASKS 500 /* typical number of tasks */ num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS; if (num_pgt_pages > nr_free_pages() / 10) num_pgt_pages = nr_free_pages() / 10; if (num_pgt_pages > pgt_cache_water[1]) pgt_cache_water[1] = num_pgt_pages; /* install the gate page in the global page table: */ put_gate_page(virt_to_page(ia64_imva(__start_gate_section)), GATE_ADDR);#ifdef CONFIG_IA32_SUPPORT ia32_gdt_init();#endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -