📄 init.c
字号:
/* * Initialize MMU support. * * Copyright (C) 1998-2002 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> */#include <linux/config.h>#include <linux/module.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/bootmem.h>#include <linux/mm.h>#include <linux/personality.h>#include <linux/reboot.h>#include <linux/slab.h>#include <linux/swap.h>#include <linux/efi.h>#include <linux/mmzone.h>#include <asm/bitops.h>#include <asm/dma.h>#include <asm/ia32.h>#include <asm/io.h>#include <asm/machvec.h>#include <asm/numa.h>#include <asm/pgalloc.h>#include <asm/sal.h>#include <asm/system.h>#include <asm/uaccess.h>#include <asm/mca.h>/* References to section boundaries: */extern char _stext, _etext, _edata, __init_begin, __init_end;extern void ia64_tlb_init (void);extern int filter_rsvd_memory (unsigned long, unsigned long, void *);/* Note - may be changed by platform_setup */unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;#define LARGE_GAP 0x40000000 /* Use virtual mem map if a hole is > than this */static unsigned long totalram_pages, reserved_pages;struct page *zero_page_memmap_ptr; /* map entry for zero page */unsigned long vmalloc_end = VMALLOC_END_INIT;static struct page *vmem_map;static unsigned long num_dma_physpages;intdo_check_pgt_cache (int low, int high){ int freed = 0; if (pgtable_cache_size > high) { do { if (pgd_quicklist) free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed; if (pmd_quicklist) free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed; if (pte_quicklist) free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed; } while (pgtable_cache_size > low); } return freed;}inline voidia64_set_rbs_bot (void){ unsigned long stack_size = current->rlim[RLIMIT_STACK].rlim_max & -16; if (stack_size > MAX_USER_STACK_SIZE) stack_size = MAX_USER_STACK_SIZE; current->thread.rbs_bot = STACK_TOP - stack_size;}/* * This performs some platform-dependent address space initialization. * On IA-64, we want to setup the VM area for the register backing * store (which grows upwards) and install the gateway page which is * used for signal trampolines, etc. */voidia64_init_addr_space (void){ struct vm_area_struct *vma; ia64_set_rbs_bot(); /* * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore * the problem. When the process attempts to write to the register backing store * for the first time, it will get a SEGFAULT in this case. */ vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (vma) { vma->vm_mm = current->mm; vma->vm_start = current->thread.rbs_bot & PAGE_MASK; vma->vm_end = vma->vm_start + PAGE_SIZE; vma->vm_page_prot = PAGE_COPY; vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP; vma->vm_ops = NULL; vma->vm_pgoff = 0; vma->vm_file = NULL; vma->vm_private_data = NULL; down_write(¤t->mm->mmap_sem); if (insert_vm_struct(current->mm, vma)) { up_write(¤t->mm->mmap_sem); kmem_cache_free(vm_area_cachep, vma); return; } up_write(¤t->mm->mmap_sem); } /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */ if (!(current->personality & MMAP_PAGE_ZERO)) { vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (vma) { memset(vma, 0, sizeof(*vma)); vma->vm_mm = current->mm; vma->vm_end = PAGE_SIZE; vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT); vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED; down_write(¤t->mm->mmap_sem); if (insert_vm_struct(current->mm, vma)) { up_write(¤t->mm->mmap_sem); kmem_cache_free(vm_area_cachep, vma); return; } up_write(¤t->mm->mmap_sem); } }}voidfree_initmem (void){ unsigned long addr, eaddr; addr = (unsigned long) ia64_imva(&__init_begin); eaddr = (unsigned long) ia64_imva(&__init_end); for (; addr < eaddr; addr += PAGE_SIZE) { clear_bit(PG_reserved, &virt_to_page((void *)addr)->flags); set_page_count(virt_to_page((void *)addr), 1); free_page(addr); ++totalram_pages; } printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n", (&__init_end - &__init_begin) >> 10);}voidfree_initrd_mem(unsigned long start, unsigned long end){ /* * EFI uses 4KB pages while the kernel can use 4KB or bigger. * Thus EFI and the kernel may have different page sizes. It is * therefore possible to have the initrd share the same page as * the end of the kernel (given current setup). * * To avoid freeing/using the wrong page (kernel sized) we: * - align up the beginning of initrd * - align down the end of initrd * * | | * |=============| a000 * | | * | | * | | 9000 * |/////////////| * |/////////////| * |=============| 8000 * |///INITRD////| * |/////////////| * |/////////////| 7000 * | | * |KKKKKKKKKKKKK| * |=============| 6000 * |KKKKKKKKKKKKK| * |KKKKKKKKKKKKK| * K=kernel using 8KB pages * * In this example, we must free page 8000 ONLY. So we must align up * initrd_start and keep initrd_end as is. */ start = PAGE_ALIGN(start); end = end & PAGE_MASK; if (start < end) printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { if (!VALID_PAGE(virt_to_page((void *)start))) continue; clear_bit(PG_reserved, &virt_to_page((void *)start)->flags); set_page_count(virt_to_page((void *)start), 1); free_page(start); ++totalram_pages; }}voidsi_meminfo (struct sysinfo *val){ val->totalram = totalram_pages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = 0; val->freehigh = 0; val->mem_unit = PAGE_SIZE; return;}voidshow_mem(void){ int i, reserved; int shared, cached; pg_data_t *pgdat; char *tchar = (numnodes > 1) ? "\t" : ""; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { reserved=0; cached=0; shared=0; if (numnodes > 1) printk("Node ID: %d\n", pgdat->node_id); for(i = 0; i < pgdat->node_size; i++) { if (!VALID_PAGE(pgdat->node_mem_map+i)) continue; if (PageReserved(pgdat->node_mem_map+i)) reserved++; else if (PageSwapCache(pgdat->node_mem_map+i)) cached++; else if (page_count(pgdat->node_mem_map + i)) shared += page_count(pgdat->node_mem_map + i) - 1; } printk("%s%ld pages of RAM\n", tchar, pgdat->node_size); printk("%s%d reserved pages\n", tchar, reserved); printk("%s%d pages shared\n", tchar, shared); printk("%s%d pages swap cached\n", tchar, cached); } printk("Total of %ld pages in page table cache\n", pgtable_cache_size); show_buffers(); printk("%d free buffer pages\n", nr_free_buffer_pages());}/* * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection * (execute-only, typically). */struct page *put_gate_page (struct page *page, unsigned long address){ pgd_t *pgd; pmd_t *pmd; pte_t *pte; if (!PageReserved(page)) printk(KERN_ERR "put_gate_page: gate page at 0x%p not in reserved memory\n", page_address(page)); pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */ spin_lock(&init_mm.page_table_lock); { pmd = pmd_alloc(&init_mm, pgd, address); if (!pmd) goto out; pte = pte_alloc(&init_mm, pmd, address); if (!pte) goto out; if (!pte_none(*pte)) { pte_ERROR(*pte); goto out; } flush_page_to_ram(page); set_pte(pte, mk_pte(page, PAGE_GATE)); } out: spin_unlock(&init_mm.page_table_lock); /* no need for flush_tlb */ return page;}void __initia64_mmu_init (void *my_cpu_data){ unsigned long psr, rid, pta, impl_va_bits; extern void __init tlb_init (void);#ifdef CONFIG_IA64_MCA int cpu;#endif#ifdef CONFIG_DISABLE_VHPT# define VHPT_ENABLE_BIT 0#else# define VHPT_ENABLE_BIT 1#endif /* * Set up the kernel identity mapping for regions 6 and 5. The mapping for region * 7 is setup up in _start(). */ psr = ia64_clear_ic(); rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET); ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (IA64_GRANULE_SHIFT << 2)); rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START); ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1); /* ensure rr6 is up-to-date before inserting the PERCPU_ADDR translation: */ ia64_srlz_d(); ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR, pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)), PAGE_SHIFT); ia64_set_psr(psr); ia64_srlz_i(); /* * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped * address space. The IA-64 architecture guarantees that at least 50 bits of * virtual address space are implemented but if we pick a large enough page size * (e.g., 64KB), the mapped address space is big enough that it will overlap with * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages, * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a * problem in practice. Alternatively, we could truncate the top of the mapped * address space to not permit mappings that would overlap with the VMLPT. * --davidm 00/12/06 */# define pte_bits 3# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT) /* * The virtual page table has to cover the entire implemented address space within * a region even though not all of this space may be mappable. The reason for * this is that the Access bit and Dirty bit fault handlers perform * non-speculative accesses to the virtual page table, so the address range of the * virtual page table itself needs to be covered by virtual page table. */# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)# define POW2(n) (1ULL << (n)) impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -