⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bp源程序!.txt

📁 人工神经元的bp算法
💻 TXT
📖 第 1 页 / 共 2 页
字号:


        /*      batchnet.c
                Generic back-propagation neural network*/
        #include <stdio.h>
        #include <stdlib.h>
        #include <math.h>
        #include <conio.h>
        #include <ctype.h>
        #include <string.h>
        #include "time.h"
        #include "stddef.h"
        #define ESC 27
        #define ERRORLEVEL 0.000000001
        #define ITEMS 8
        double C1=1.2;
        double C2=0.8;
        double lasterror=2.0;
        double ERROR_RATE;
        double e;
        /* typedefs and prototypes for dynamic storage of arrays */
        typedef float *PFLOAT;
        typedef PFLOAT VECTOR;
        typedef PFLOAT *MATRIX;
        void VectorAllocate(VECTOR *vector,int nCols);
        void AllocateCols(PFLOAT matrix[],int nRows,int nCols);
        void MatrixAllocate(MATRIX *pmatrix,int nRows,int nCols);
        void MatrixFree(MATRIX matrix,int nRows);
        void DisplayNet(MATRIX matrix);
        /* define storage for net layers */
        /* Arrays for inputs,outputs,deltas,weights & targets */
MATRIX out0;            /* input layer                          */
MATRIX out1;            /* hidden layer                         */
MATRIX delta1;          /* delta at hidden layer                */
MATRIX delw1;           /* change in weights input:hidden       */
MATRIX w1;              /* weights input:hidden                 */
MATRIX out2;            /* output layer                         */
MATRIX delta2;          /* delta at output layer                */
MATRIX delw2;           /* change in weight hidden:output       */
MATRIX w2;              /* weights hidden:output                */
MATRIX target;          /* target output                        */
VECTOR PatternID;       /* indentifier for each stored pattern  */
        void main(int argc,char *argv[])
        {                                               /*  1  */
        time_t start,finish;
        float eta=0.1,                  /* default learning rate        */
        alpha=0.02;                     /* default momentum factor      */
        int nReportErrors=50;           /*error reporting frequency     */
        float ErrorLevel=ERRORLEVEL;    /* satisfactory error level     */
        char MonitorError=0;            /* true sum squared error value */
        float error;                    /* latest sum squared error value */
        register int h;                 /* index hidden layer           */
        register int i;                 /* index input layer            */
        register int j;                 /* index output layer           */
        int p,                          /* index pattern number         */
            q,                          /* index iterations desired     */
            r,                          /* index run number             */
            nPatterns,                  /* number of patterns desired   */
            nInputNodes,                /* number of input nodes        */
            nHiddenNodes,               /* number of hidden nodes       */
            nOutputNodes,               /* number of output nodes       */
            nIterations,                /* number of iteration nodes    */
            nRuns;                      /* number of runs               */
        FILE *fpRun,                    /* run file                     */
             *fpPattern,                /* source pattern input file    */
             *fpWeights,                /* initial weight file          */
             *fpWeightsOut,             /* final weight output file     */
             *fpResults,                /* results output file          */
             *fpError;                  /* error output file            */
        char szResults[66];             /* various filenames(pathnames)  */
        char szError[66];
        char szPattern[66];
        char szWeights[66];
        char szWeightsOut[66];
        char *progname=*argv;           /*name of executable DOS 3.x only  */
        /* read optional-arguments  */
        start=time(NULL);
        for (;argc>1;argc--)
          {                                      /*  2  */
           char *arg=*++argv;
           if (*arg!='-')
             break;
           switch(*++arg)
           {                                     /*  3  */
             case 'e':sscanf(++arg,"%d",&nReportErrors);break;
             case 'd':sscanf(++arg,"%f",&ErrorLevel);break;
             default:break;
           }                                     /*  3  */
          }                                      /*  2  */
        if (argc<2)
        {                                        /*  2  */
            fprintf(stderr,"\n\tUsage: %s [-en -df] runfilename\n",progname);
            fprintf(stderr,"\t  -en =>report error every n iterations\n");
            fprintf(stderr,"\t  -df =>done if mean spuared error <f\n");
            exit(1);
        }                                        /*  2  */
        printf("Please input error contral rate:(0.001-0.1)\n");
        scanf("%f",&e);
        /* open run file for reading  */
        if ((fpRun=fopen(*argv,"r"))==NULL)
        {                                        /*  2  */
            fprintf(stderr,"%s:can't open file %s\n",progname,*argv);
            exit(1);
        }                                        /*  2  */
        /* Read first line :no. of runs (lines to read from run file)  */
        fscanf(fpRun,"%d",&nRuns);
        /*--------------------beginning of work loop------------------*/
        for (r=0;r<nRuns;r++)
        {                                         /*  2  */
           /* read and parse the run specification line;  */
           fscanf(fpRun,"%s%s%s%s%s%d%d%d%d%d%f%f",
           szResults,           /* output results file  */
           szError,                     /* error output file    */
           szPattern,           /* pattern input file   */
           szWeights,           /* initial weights file */
           szWeightsOut,        /* final weights output file  */
           &nPatterns,          /* number of patterns to learn */
           &nIterations,        /* number of iterations through the date  */
           &nInputNodes,        /* number of input nodes   */
           &nHiddenNodes,       /* number of hidden nodes  */
           &nOutputNodes,       /* number of output nodes  */
           &eta,                        /* learning rate           */
           &alpha);                     /* momentum factor         */
        /*--------------allocate dynamic storage for all data-------*/
MatrixAllocate(&out0,   nPatterns,      nInputNodes);
MatrixAllocate(&out1,   nPatterns,      nHiddenNodes);
MatrixAllocate(&out2,   nPatterns,      nOutputNodes);
MatrixAllocate(&delta2, nPatterns,      nOutputNodes);
MatrixAllocate(&delw2,  nOutputNodes,   nHiddenNodes+1);
MatrixAllocate(&w2,     nOutputNodes,   nHiddenNodes+1);
MatrixAllocate(&delta1, nPatterns,      nHiddenNodes);
MatrixAllocate(&delw1,  nHiddenNodes,   nInputNodes+1);
MatrixAllocate(&w1,     nHiddenNodes,   nInputNodes+1);
MatrixAllocate(&target, nPatterns,      nOutputNodes);
VectorAllocate(&PatternID,      nPatterns);
        /*--------Read the initial weight matrices;----------*/
        if ((fpWeights=fopen(szWeights,"r"))==NULL)
        {                                   /*  3  */
          fprintf(stderr,"%s:can't open file %s\n",progname,szWeights);
          exit(1);
        }                                  /*  3  */
        /* read input => hidden weights  */
        for (h=0;h<nHiddenNodes;h++)
            for (i=0;i<=nInputNodes;i++)
            {                              /*  3  */
              fscanf(fpWeights,"%f",&w1[h][i]);
              delw1[h][i]=0.0;
            }                              /*  3  */
        /* read hidden => out weights  */
        for (j=0;j<nOutputNodes;j++)
            for (h=0;h<=nHiddenNodes;h++)
            {                              /*  3  */
              fscanf(fpWeights,"%f",&w2[j][h]);
              delw2[j][h]=0.0;
            }                              /*  3  */
            fclose(fpWeights);
        /*-------------Read in all patterns to be learned;--------*/
        if((fpPattern=fopen(szPattern,"r"))==NULL)
        {                                  /*  3  */
            fprintf(stderr,"%s:can't open file %s\n",progname,szPattern);
            exit(1);
        }                                  /*  3  */
        for(p=0;p<nPatterns;p++)
        {                                  /*  3  */
          for(i=0;i<nInputNodes;i++)
            if(fscanf(fpPattern,"%f",&out0[p][i])!=1)
               goto ALLPATTERNSREAD;
          /* read in target outputs for each pattern  */
          for (j=0;j<nOutputNodes;j++)
            fscanf(fpPattern,"%f",&target[p][j]);
          /*  read in identifier for each pattern  */
          fscanf(fpPattern,"%f",&PatternID[p]);
        }                                    /*  3  */
        ALLPATTERNSREAD:
        fclose(fpPattern);
        if (p<nPatterns)
        {                                    /*  3  */
          fprintf(stderr,"%s:%d out of %d patterns read\n",
                progname,p,nPatterns);
          nPatterns=p;
        }                                    /*  3  */
        /* open error output file  */
        if ((fpError=fopen(szError,"w"))==NULL)
        {                                    /*   3  */
          fprintf(stderr,"%s:can't open file %s\n",progname,szError);
          exit(1);
        }                                    /*  3  */
        //clrscr();
        fprintf(stderr,"\n\n\n\t\t     Back-Propagation Neural Networks\n\n");
        fprintf(stderr,nIterations>1?"\n\n\n\t\tBegin training,Press'ESC'to
termina
te...\n\n":"\n\tTesting\n\n");
        /*---------begin iteration loop--------*/
        for (q=0;q<nIterations;q++)
        {                                    /*  3  */
           for (p=0;p<nPatterns;p++)
           {                                 /*  4  */
             /*-------hidden layer-------*/
             /* Sum input to hidden layer over all
             input-weight combinations  */
             for (h=0;h<nHiddenNodes;h++)
             {                               /*  5  */
               float sum=w1[h][nInputNodes];  /*begin with bias  */
               for (i=0;i<nInputNodes;i++)
                 sum+=w1[h][i]*out0[p][i];
               /* compute output(use sigmoid)   */
               out1[p][h]=1.0/(1.0+exp(-sum));
             }                               /*  5  */
             /*------------output layer----------------*/
             for (j=0;j<nOutputNodes;j++)
             {                               /*  5   */
               float sum=w2[j][nHiddenNodes];
               for (h=0;h<nHiddenNodes;h++)
               sum+=w2[j][h]*out1[p][h];
               out2[p][j]=1.0/(1.0+exp(-sum));
             }                                /*  5  */
             /*-----------delta output------------*/
             /*  Compute deltas for each output unit for a given pattern */
             for(j=0;j<nOutputNodes;j++)
               delta2[p][j]=(target[p][j]-out2[p][j])*
                            out2[p][j]*(1.0-out2[p][j]);
           /*----------delta hidden---------------*/
        for(h=0;h<nHiddenNodes;h++)
        {
/*  5  */
           float sum=0.0;
           for(j=0;j<nOutputNodes;j++)
            sum+=delta2[p][j]*w2[j][h];
           delta1[p][h]=sum*out1[p][h]*(1.0-out1[p][h]);
        }
/*  5  */
      }                                     /*  4  */
      /*---------adapt weights hidden:output--------------*/
      for (j=0;j<nOutputNodes;j++)
      {                                     /*  4  */
        float dw;       /* delta weight   */
        float sum=0.0;
        /* grand sum of deltas for each output node for one epoch  */
        for (p=0;p<nPatterns;p++)
          sum+=delta2[p][j];
        /*  Calculate new bias weight for each output unit  */
        dw=eta*sum+alpha*delw2[j][nHiddenNodes];
        w2[j][nHiddenNodes]+=dw;
        delw2[j][nHiddenNodes]=dw;      /* delta for bias  */
        /*  Calculate new weights   */
        for (h=0;h<nHiddenNodes;h++)
        {                                    /*  5  */
          float sum=0.0;
          for (p=0;p<nPatterns;p++)
            sum+=delta2[p][j]*out1[p][h];
          dw=eta*sum+alpha*delw2[j][h];
          w2[j][h]+=dw;
          delw2[j][h]=dw;
          }                                 /*  5  */
        }                                   /*  4  */
        /*---------adapt weights input:hidden----------*/
        for(h=0;h<nHiddenNodes;h++)
        {                                   /*  4  */
          float dw;                                             /*  delta weight
*/
          float sum=0.0;
          for (p=0;p<nPatterns;p++)
            sum+=delta1[p][h];
          /* Calculate new bias weight for each hidden unit   */
          dw=eta*sum+alpha*delw1[h][nInputNodes];
          w1[h][nInputNodes]+=dw;
          delw1[h][nInputNodes]=dw;
          /*  Calculate new weights   */
          for (i=0;i<nInputNodes;i++)
          {                                  /*  5  */
            float sum=0.0;
            for (p=0;p<nPatterns;p++)
            sum+=delta1[p][h]*out0[p][i];
            dw=eta*sum+alpha*delw1[h][j];
            w1[h][i]+=dw;
            delw1[h][i]=dw;
          }                                   /*   5  */
        }                                     /*   4   */
        /* ---------monitor keyboard requests-----------*/
        if (kbhit())
        {                                     /*   4   */
           int c=getch();
           if((c=toupper(c))=='E')
              MonitorError++;
           else if (c==ESC)
             exit(0);                                           /*Terminate

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -