⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 knnclass.m

📁 很好用的统计模式识别工具箱
💻 M
字号:
function [class,index,dist] = knnclass(tst,X,I,K)% [class,index,dist] = knnclass(tst,X,I,K)%% KNNCLASS is an implementation of K-Nearest Neighbours %  classifier. The Euclidean metric is used.%% Input:%  tst [DxNtst] Ntst test points of dimension D.%  X [D,Ntrn] Ntrn training points of dimension D.%  I [1,Ntrn] Ntrn labels of the training points.%  K [1x1] number of nearest neighbours.%% Output:%  class [1xNtst] class labels for each test point.%  index [1xNtst] index of the nearest point from the traing set.%  dist [1xNtst] distance from the nearest point from the traing set.%% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz% Written Vojtech Franc (diploma thesis)% Modifications% 26-feb-2001 V.Francntst=size(tst,2);ntrn=size(X,2);nclass=max(I)-min(I)+1;class=zeros(1,ntst);index=zeros(1,ntst);dist=zeros(1,ntst);for i=1:ntst,  d = diag((X-repmat(tst(:,i),1,ntrn))'*(X-repmat(tst(:,i),1,ntrn)));  [d,inx]=sort(d);    % sort distances in ascending order    knn=I(inx);    index(i)=inx(1);   % get distance of the nearest point and its index  dist(i)=d(1);    h=hist(knn(1:K),[1:nclass]);    [cnt,class(i)]=max(h);enddist=sqrt(dist);  return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -