📄 mempoolt.inl
字号:
#ifndef CYGONCE_KERNEL_MEMPOOLT_INL#define CYGONCE_KERNEL_MEMPOOLT_INL//==========================================================================//// mempoolt.inl//// Mempoolt (Memory pool template) class declarations////==========================================================================//####COPYRIGHTBEGIN####//// -------------------------------------------// The contents of this file are subject to the Cygnus eCos Public License// Version 1.0 (the "License"); you may not use this file except in// compliance with the License. You may obtain a copy of the License at// http://sourceware.cygnus.com/ecos// // Software distributed under the License is distributed on an "AS IS"// basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the// License for the specific language governing rights and limitations under// the License.// // The Original Code is eCos - Embedded Cygnus Operating System, released// September 30, 1998.// // The Initial Developer of the Original Code is Cygnus. Portions created// by Cygnus are Copyright (C) 1998,1999 Cygnus Solutions. All Rights Reserved.// -------------------------------------------////####COPYRIGHTEND####//==========================================================================//#####DESCRIPTIONBEGIN####//// Author(s): hmt// Contributors: hmt// Date: 1998-02-10// Purpose: Define Mempoolt class interface// Description: The class defined here provides the APIs for thread-safe,// kernel-savvy memory managers; make a class with the// underlying allocator as the template parameter.// Usage: #include <cyg/kernel/mempoolt.hxx>// ////####DESCRIPTIONEND####////==========================================================================#include <cyg/kernel/thread.inl> // implementation eg. Cyg_Thread::self();#include <cyg/kernel/sched.inl> // implementation eg. Cyg_Scheduler::lock();// -------------------------------------------------------------------------// Constructor; we _require_ these arguments and just pass them through to// the implementation memory pool in use.template <class T>Cyg_Mempoolt<T>::Cyg_Mempoolt( cyg_uint8 *base, cyg_int32 size, CYG_ADDRWORD arg_thru) // Constructor : pool( base, size, arg_thru ){}template <class T>Cyg_Mempoolt<T>::~Cyg_Mempoolt() // destructor{ // Prevent preemption Cyg_Scheduler::lock(); while ( ! queue.empty() ) { Cyg_Thread *thread = queue.dequeue(); thread->set_wake_reason( Cyg_Thread::DESTRUCT ); thread->wake(); } // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); } // -------------------------------------------------------------------------// get some memory; wait if none availabletemplate <class T>inline cyg_uint8 *Cyg_Mempoolt<T>::alloc( cyg_int32 size ){ CYG_REPORT_FUNCTION(); Cyg_Thread *self = Cyg_Thread::self(); // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); // Loop while we got no memory, sleeping each time around the // loop. This copes with the possibility of a higher priority thread // grabbing the freed storage between the wakeup in free() and this // thread actually starting. cyg_uint8 *ret; cyg_bool result = true; while( result && (NULL == (ret = pool.alloc( size ))) ) { self->set_sleep_reason( Cyg_Thread::WAIT ); self->sleep(); queue.enqueue( self ); CYG_ASSERT( 1 == Cyg_Scheduler::get_sched_lock(), "Called with non-zero scheduler lock"); // Unlock scheduler and allow other threads to run Cyg_Scheduler::unlock(); Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); switch( self->get_wake_reason() ) { case Cyg_Thread::DESTRUCT: case Cyg_Thread::BREAK: result = false; break; case Cyg_Thread::EXIT: self->exit(); break; default: break; } } CYG_ASSERTCLASS( this, "Bad this pointer"); if ( ! result ) ret = NULL; // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); CYG_REPORT_RETVAL( ret ); return ret;}#ifdef CYGFUN_KERNEL_THREADS_TIMER// -------------------------------------------------------------------------// get some memory with a timeouttemplate <class T>inline cyg_uint8 *Cyg_Mempoolt<T>::alloc( cyg_int32 size, cyg_tick_count abs_timeout ){ CYG_REPORT_FUNCTION(); Cyg_Thread *self = Cyg_Thread::self(); // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); // Loop while we got no memory, sleeping each time around the // loop. This copes with the possibility of a higher priority thread // grabbing the freed storage between the wakeup in free() and this // thread actually starting. cyg_uint8 *ret; cyg_bool result = true; // Set the timer _once_ outside the loop. self->set_timer( abs_timeout, Cyg_Thread::TIMEOUT ); // If the timeout is in the past, the wake reason will have been // set to something other than NONE already. Set the result false // to force an immediate return. if( self->get_wake_reason() != Cyg_Thread::NONE ) result = false; while( result && (NULL == (ret = pool.alloc( size ))) ) { self->set_sleep_reason( Cyg_Thread::TIMEOUT ); self->sleep(); queue.enqueue( self ); CYG_ASSERT( 1 == Cyg_Scheduler::get_sched_lock(), "Called with non-zero scheduler lock"); // Unlock scheduler and allow other threads to run Cyg_Scheduler::unlock(); Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); switch( self->get_wake_reason() ) { case Cyg_Thread::TIMEOUT: result = false; break; case Cyg_Thread::DESTRUCT: case Cyg_Thread::BREAK: result = false; break; case Cyg_Thread::EXIT: self->exit(); break; default: break; } } CYG_ASSERTCLASS( this, "Bad this pointer"); if ( ! result ) ret = NULL; // clear the timer; if it actually fired, no worries. self->clear_timer(); // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); CYG_REPORT_RETVAL( ret ); return ret;}#endif // -------------------------------------------------------------------------// get some memory, return NULL if none availabletemplate <class T>inline cyg_uint8 *Cyg_Mempoolt<T>::try_alloc( cyg_int32 size ){ CYG_REPORT_FUNCTION(); // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); cyg_uint8 *ret = pool.alloc( size ); CYG_ASSERTCLASS( this, "Bad this pointer"); // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); CYG_REPORT_RETVAL( ret ); return ret;} // -------------------------------------------------------------------------// free the memory back to the pooltemplate <class T>cyg_boolCyg_Mempoolt<T>::free( cyg_uint8 *p, cyg_int32 size ){ // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); cyg_int32 ret = pool.free( p, size ); CYG_ASSERTCLASS( this, "Bad this pointer"); while ( ret && !queue.empty() ) { // we succeeded and there are people waiting Cyg_Thread *thread = queue.dequeue(); CYG_ASSERTCLASS( thread, "Bad thread pointer"); // we wake them all up (ie. broadcast) to cope with variable block // allocators freeing a big block when lots of small allocs wait. thread->set_wake_reason( Cyg_Thread::DONE ); thread->wake(); // we cannot yield here; if a higher prio thread can't satisfy its // request it would re-queue and we would loop forever } // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); return ret;}// -------------------------------------------------------------------------// if applicable: return -1 if not fixed sizetemplate <class T>inline cyg_int32Cyg_Mempoolt<T>::get_blocksize(){ // there should not be any atomicity issues here return pool.get_blocksize();}// -------------------------------------------------------------------------// these two are obvious and generic, but need atomicity protection (maybe)template <class T>inline cyg_int32Cyg_Mempoolt<T>::get_totalmem(){ // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); cyg_int32 ret = pool.get_totalmem(); // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); return ret;}template <class T>inline cyg_int32Cyg_Mempoolt<T>::get_freemem(){ // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); cyg_int32 ret = pool.get_freemem(); // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); return ret;}// -------------------------------------------------------------------------// get information about the construction parameters for external// freeing after the destruction of the holding objecttemplate <class T>inline voidCyg_Mempoolt<T>::get_arena( cyg_uint8 * &base, cyg_int32 &size, CYG_ADDRWORD &arg_thru ){ // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); pool.get_arena( base, size, arg_thru ); // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock();}// -------------------------------------------------------------------------// Return the size of the memory allocation (previously returned // by alloc() or try_alloc() ) at ptr. Returns -1 if not foundtemplate <class T>cyg_int32Cyg_Mempoolt<T>::get_allocation_size( cyg_uint8 *ptr ){ cyg_int32 ret; // Prevent preemption Cyg_Scheduler::lock(); CYG_ASSERTCLASS( this, "Bad this pointer"); ret = pool.get_allocation_size( ptr ); // Unlock the scheduler and maybe switch threads Cyg_Scheduler::unlock(); return ret;}// -------------------------------------------------------------------------// debugging/assert function#ifdef CYGDBG_USE_ASSERTStemplate <class T>inline cyg_boolCyg_Mempoolt<T>::check_this(cyg_assert_class_zeal zeal) const{ CYG_REPORT_FUNCTION(); if ( Cyg_Thread::DESTRUCT == Cyg_Thread::self()->get_wake_reason() ) // then the whole thing is invalid, and we know it. // so return OK, since this check should NOT make an error. return true; // check that we have a non-NULL pointer first if( this == NULL ) return false; return true;}#endif// -------------------------------------------------------------------------#endif // ifndef CYGONCE_KERNEL_MEMPOOLT_INL// EOF mempoolt.inl
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -