📄 torr_errf2.m
字号:
% By Philip Torr 2002
% copyright Microsoft Corp.
%
% %designed for the good of the world by Philip Torr based on ideas contained in
% copyright Philip Torr and Microsoft Corp 2002
%
%returns the first order approx to the reprojection error as defined in:
%
% @phdthesis{Torr:thesis,
% author="Torr, P. H. S.",
% title="Outlier Detection and Motion Segmentation",
% school=" Dept. of Engineering Science, University of Oxford",
% year=1995}
%
%
%
% @article{Torr97c,
% author="Torr, P. H. S. and Murray, D. W. ",
% title="The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix",
% journal="IJCV",
% volume = 24,
% number = 3,
% pages = {271--300},
% year=1997
%the F matrix is defined like:
% (nx2, ny2, m3) f(1 2 3) nx1
% (4 5 6) ny1
% (7 8 9) m3
%returns the square of the error
function e = torr_errf2(f, nx1,ny1,nx2,ny2, no_matches, m3)
%disp('estimating squared errors on f')
f = f /norm(f);
r = f(1) .* nx1(:).* nx2(:) + f(2).* ny1(:).* nx2(:) + f(3) .* m3.* nx2(:);
r = r + f(4) .* nx1(:).* ny2(:) + f(5) .* ny1(:).* ny2(:)+ f(6) .* m3.* ny2(:);
r = r + f(7) .* nx1(:).* m3+ f(8) .* ny1(:).* m3+ f(9) .* m3.* m3;
r = r.^2;
fdx1 = f(1) .* nx2(:) + f(4) .* ny2(:) + f(7) .* m3;
fdx2 = f(1) .* nx1(:) + f(2).* ny1(:) + f(3) .* m3;
fdy1 = f(2).* nx2(:) + f(5) .* ny2(:)+ f(8) .* m3;
fdy2 = f(4) .* nx1(:) + f(5) .* ny1(:)+ f(6) .* m3;
g = (fdx1 .* fdx1 +fdx2 .* fdx2 +fdy1 .* fdy1 +fdy2 .* fdy2);
% for non squared error
% g = sqrt(fdx1 .* fdx1 +fdx2 .* fdx2 +fdy1 .* fdy1 +fdy2 .* fdy2);
% g = sqrt(g);
e = r./g;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -