📄 torr_napsac_f.m
字号:
% By Philip Torr 2002
% copyright Microsoft Corp.
%MAPSAC is the Bayesian version of MLESAC, and it is easier to pronounce!
%
% %designed for the good of the world by Philip Torr based on ideas contained in
% copyright Philip Torr and Microsoft Corp 2002
%
% [f,f_sq_errors, n_inliers,inlier_matches] = torr_mapsac_F(x1,y1,x2,y2, no_matches, m3, no_samp, T)
% f is fundamentalmatrix in 9 vector
% f_sq_errors are non robust errors on each match
% n_inliers is the no of inliers
% inlier_index is a vector with index no of each inlier
%
% x1,y1,x2,y2 are column vectors of the data no_matches by 4
% m3 is the 3rd homogeneous coordinate (256)
% no_samp is the number of samples to be taken (set to 0 if jump out required, at the moment jump out not implemented
% T is the threshold on the residuals, derived from MLESAC?MAPSAC paper
%
% at the moment it is assumed all is normalized so that Gaussian noise has sigma 1
% /*
%
% @inproceedings{Torr93b,
% author = "Torr, P. H. S. and Murray, D. W.",
% title = "Outlier Detection and Motion Segmentation",
% booktitle = "Sensor Fusion VI",
% editor = "Schenker, P. S.",
% publisher = "SPIE volume 2059",
% note = "Boston",
% pages = {432-443},
% year = 1993 }
%
%
% @phdthesis{Torr:thesis,
% author="Torr, P. H. S.",
% title="Outlier Detection and Motion Segmentation",
% school=" Dept. of Engineering Science, University of Oxford",
% year=1995}
%
%
%
% @article{Torr97c,
% author="Torr, P. H. S. and Murray, D. W. ",
% title="The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix",
% journal="IJCV",
% volume = 24,
% number = 3,
% pages = {271--300},
% year=1997
% }
%
%
%
%
% @article{Torr99c,
% author = "Torr, P. H. S. and Zisserman, A",
% title ="MLESAC: A New Robust Estimator with Application to Estimating Image Geometry ",
% journal = "CVIU",
% Volume = {78},
% number = 1,
% pages = {138-156},
% year = 2000}
%
% %MAPSAC is the Bayesian version of MLESAC, and it is easier to pronounce!
% it is described in:
%
% @article{Torr02d,
% author = "Torr, P. H. S.",
% title ="Bayesian Model Estimation and Selection for Epipolar Geometry and
% Generic Manifold Fitting",
% journal = "IJCV",
% Volume = {?},
% number = ?,
% pages = {?},
% url = "http://research.microsoft.com/~philtorr/",
% year = 2002}
%
%threshold is the maximum squared value of the residuals
%no_matches is the number of matches
%no_samp is the number of random samples to be taken
%m3 is the estimate of the 3rf projective coordinate (f in pixels)
%the F matrix is defined like:
% (nx2, ny2, m3) f(1 2 3) nx1
% (4 5 6) ny1
% (7 8 9) m3
%we minimize a robust function min(e^2,T) see mapsac paper.
function [f,f_sq_errors, n_inliers,inlier_index] = torr_napsac_F(x1,y1,x2,y2, no_matches, m3, no_samp, T)
%disp('This just does calculation of perfect data,for test')
%disp('Use estf otherwise')
%f = rand(9);
%%%%%%%%%%debug
%used for debugging:
no_trials = 1;
max_inliers = 0;
%%%%%%%%%%end debug
for(i = 1:no_samp)
%NAPSAC frenzyoid! first pick one point then take 6 nearest, described in thesis/china paper
choice = randperm(no_matches);
%set up local design matrix, here we estimate from 7 matches
distance_xyxy = (x1 - x1(choice(1))).^2 + (x2 - x2(choice(1))).^2 + (y1 - y1(choice(1))).^2 + (y2 - y2(choice(1))).^2;
[sorted_distance_xyxy, index_distance_xyxy] = sort(distance_xyxy);
%next randomly permute the best 50 matches
choice2 = randperm(60);
for (j = 1:7)
tx1(j) = x1( index_distance_xyxy(choice2(j)));
tx2(j) = x2( index_distance_xyxy(choice2(j)));
ty1(j) = y1( index_distance_xyxy(choice2(j)));
ty2(j) = y2( index_distance_xyxy(choice2(j)));
end % for (j = 1:7)
% tx1 = x1( index_distance_xyxy(1:7));
% tx2 = x2( index_distance_xyxy(1:7));
% ty1 = y1( index_distance_xyxy(1:7));
% ty2 = y2( index_distance_xyxy(1:7));
%produces 1 or 3 solutions.
[no_F big_result]= torr_F_constrained_fit(tx1,ty1,tx2,ty2,m3);
for j = 1:no_F
ft = big_result(j,:);
%get squared errors
et = torr_errf2(ft,x1,y1,x2,y2, no_matches, m3);
%capped residuals
cet = min(et,T);
sse = cet' * cet;
% use sse 0 to bring it to a reasonable value
if ((i ==1) & (j ==1))
f = ft;
bestsse = sse;
elseif bestsse > sse
f = ft;
bestsse = sse;
bestcet = cet; %store best set of residuals
end %if
%monitor progress %debug
inlier_index = find((et < T) == 1);
mapsac_inliers(no_trials) = length(inlier_index);
if mapsac_inliers(no_trials) > max_inliers
max_inliers = mapsac_inliers(no_trials);
else
mapsac_inliers(no_trials) = max_inliers;
end
no_trials = no_trials + 1;
%%%%%%%%end debug
end
end %for(i = 1:no_samp)
%calculate squared errors (distance to manifold of F)
f_sq_errors = torr_errf2(f,x1,y1,x2,y2, no_matches, m3);
%next generate index set of inliers
inlier_index = find((f_sq_errors < T) == 1);
n_inliers = length(inlier_index);
%%%%%%%%%%debug
%for NAPSAC paper
no_matches
n_inliers
no_trials
mapsac_inliers(1:30)
%find out how many it took to get to n_inliers
perc = n_inliers;
map_index = find((mapsac_inliers < perc) == 1);
perc100 = length(map_index)+1
%find out how many it took to get to n_inliers
perc = n_inliers * 0.9;
map_index = find((mapsac_inliers < perc) == 1);
perc90 = length(map_index)+1
perc = n_inliers * 0.8;
map_index = find((mapsac_inliers < perc) == 1);
perc80 = length(map_index)+1
perc = n_inliers * 0.7;
map_index = find((mapsac_inliers < perc) == 1);
perc70 = length(map_index)+1
perc = n_inliers * 0.6;
map_index = find((mapsac_inliers < perc) == 1);
perc60 = length(map_index)+1
n_inliers
disp('Napsac');
%
% figure
% hold on
% for i = 1:no_trials-1
% plot(i, mapsac_inliers(i),'rs');
% end
% hold off
% %%%%%%%%%%%%end debug
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -