📄 torr_compf_sc.m
字号:
% By Philip Torr 2002
% copyright Microsoft Corp.
%main()
%this script compares two methods for estimating F
%select the two methods and place their ID's in the array methods_used
%
%methods_used = [4,3]
%comparing non-linear method with Sampson
%methods_used = [4,2]
%compare sampson and Hegel
methods_used = [4,7];
%compare bundle and Hegel
methods_used = [6,7];
%comparing linear and Hegel
methods_used = [2,7];
m3 = 256;
sse2t = 0;
%
% randn('state',0)
% rand('state',0)
no_methods = 7;
foc = 256;
best_method_array = zeros(no_methods,1);
method_sse = zeros(no_methods,1);
method_n_sse = zeros(no_methods,1);
epipole_distance = zeros(no_methods,1);
oo_vicar = 0;
no_matches =100;
noise_sigma = 1;
translation_mult = foc * 10;
translation_adder = 20;
%max number of degrees to rotate
rotation_multplier = 40;
min_Z = 1;
Z_RAN = 10;
no_tests =1;
min_noise = 1;
max_noise = 1;
percent_gain = zeros(1,max_noise);
ep_percent_gain = zeros(1,max_noise);
for(noise_sigma = min_noise:max_noise)
for(i = 1:no_tests)
best_sse = 10000000000;
best_method = 5;
%generate a load of stuffs
%F
ave_fa_e = 0.0;
while ave_fa_e < 0.5
[true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_TX, true_E, true_X, true_t] = ...
torr_gen_2view_matches(foc, no_matches, noise_sigma, translation_mult, translation_adder, ...
rotation_multplier, min_Z,Z_RAN,m3);
[FA, fa] = torr_estfa(x1,y1,x2,y2, no_matches,m3);
fa_e = torr_errfa(fa, x1,y1,x2,y2, no_matches, m3);
%see what average match looks like
ave_fa_e = norm(fa_e,1)/no_matches;
if no_tests == 1
ave_fa_e;
end
end
%
% if ssse_fa <6.0
% disp('ooo vicar');
% oo_vicar = oo_vicar + 1;
% end
% %calc true epipole
true_epipole = torr_get_right_epipole(true_F,m3);
% for method = 2:6
for method = methods_used
set_rank2 = 1;
[nf, f_sq_errors, n_inliers,inlier_index,nF] ...
= torr_estimateF( [nx1,ny1,nx2,ny2], m3, [], method,set_rank2);
%calc noisy epipole
noisy_epipole = torr_get_right_epipole(nF,m3);
epipole_distance(method) = epipole_distance(method) + sqrt(norm(true_epipole -noisy_epipole));
pe = torr_errf2(nf,x1,y1,x2,y2, no_matches, m3);
n_e = torr_errf2(nf,nx1,ny1,nx2,ny2, no_matches, m3);
sse_n = norm(pe);
if (sse_n < best_sse)
best_method = method;
best_sse = sse_n;
end
method_sse(method) = method_sse(method) + sse_n;
method_n_sse(method) = method_sse(method) + norm(n_e);
end %method = 1:4
best_method_array(best_method) = best_method_array(best_method)+1;
end
best_method_array(methods_used)';
(method_sse(methods_used)/(no_tests*length(x1)))';
(method_n_sse(methods_used)/(no_tests*length(x1)))';
percent_gain(noise_sigma) = method_sse(methods_used(1))/method_sse(methods_used(2));
%disp('distance to true epipole');
(epipole_distance(methods_used)/no_tests)';
ep_percent_gain(noise_sigma) = epipole_distance(methods_used(1))/epipole_distance(methods_used(2));
%oo_vicar
%display_mat(perfect_matches, x1,y1, u1, v1)
%
% e = fm_error_hs(F, n1, n2, nowarn);
%torr_display_epipoles(nF,nF,perfect_matches, x1,y1, u1, v1)
end
disp('ratio of first to second method average error on noise free points');
100 * percent_gain
disp('ratio of first to second method average epipole error');
100 * ep_percent_gain
disp('number of times gets lowest errors')
best_method_array
disp('average error for each method')
method_sse
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -