📄 torr_main_f_ave.m
字号:
% By Philip Torr 2002
% copyright Microsoft Corp.
%main()
clear all
m3 = 256;
sse2t = 0;
%
% randn('state',0)
% rand('state',0)
no_methods = 6;
best_method_array = zeros(no_methods,1);
method_sse = zeros(no_methods,1);
method_n_sse = zeros(no_methods,1);
epipole_distance = zeros(no_methods,1);
oo_vicar = 0;
no_tests = 1;
methods_used = [2,4]
for(i = 1:no_tests)
best_sse = 10000000000;
best_method = 5;
%generate a load of stuffs
%F
ave_fa_e = 0.0;
while ave_fa_e < 0.5
torr_genf;
[FA, fa] = torr_estfa(x1,y1,x2,y2, no_matches,m3);
fa_e = torr_errfa(fa, x1,y1,x2,y2, no_matches, m3);
%see what average match looks like
ave_fa_e = norm(fa_e,1)/no_matches;
if no_tests == 1
ave_fa_e
end
end
%
% if ssse_fa <6.0
% disp('ooo vicar');
% oo_vicar = oo_vicar + 1;
% end
% %calc true epipole
true_epipole = torr_get_right_epipole(true_F,m3);
% for method = 2:6
for method = methods_used
X1 = [x1,y1, ones(length(x1),1) * m3];
X2 = [x2,y2, ones(length(x2),1) * m3];
%error on perfect data (should be zero)
%f = estf(nx1,ny1,nx2,ny2, no_matches,m3);
%f = estf(x1,y1,x2,y2, no_matches,m3);
%
% [F , f]= fm_linear(X1, X2, eye(3), method);
% e = torr_errf2(f,x1,y1,x2,y2, no_matches, m3);
% disp('noise free error (sanity check)')
% ssep = e' * e
%
% %error on noisy data
% f = fm_linear(nx1,ny1,nx2,ny2, no_matches,m3);
% e = torr_errf2(f,nx1,ny1,nx2,ny2, no_matches, m3);
% ssen = e * e'
nX1 = [nx1,ny1, ones(length(x1),1) * m3];
nX2 = [nx2,ny2, ones(length(x2),1) * m3];
% [nF , nf]= fm_linear(nX1, nX2, eye(3), method);
[nf, nF ] = torr_estimateF(nx1,ny1,nx2,ny2, no_matches, m3, method)
%calc noisy epipole
noisy_epipole = torr_get_right_epipole(nF,m3);
epipole_distance(method) = epipole_distance(method) + sqrt(norm(true_epipole -noisy_epipole));
torr_error = 1;
if torr_error
pe = torr_errf2(nf,x1,y1,x2,y2, no_matches, m3);
n_e = torr_errf2(nf,nx1,ny1,nx2,ny2, no_matches, m3);
else
CC = eye(3);
CC(3,3) = m3;
nF2 = CC * nF * CC;
n1 = [x1 y1];
n2= [x2 y2];
nowarn = 0;
ne = fm_error_hs(nF, n1, n2, nowarn);
end
% ne = torr_errf2(nf,nx1,ny1,nx2,ny2, no_matches, m3);
% disp('trimmed noisy error on noise free points')
% sse_n = ne' * ne
sse_n = norm(pe);
if (sse_n < best_sse)
best_method = method;
best_sse = sse_n;
end
method_sse(method) = method_sse(method) + sse_n;
method_n_sse(method) = method_sse(method) + norm(n_e);
end %method = 1:4
best_method_array(best_method) = best_method_array(best_method)+1;
end
% %mine
% f_torr = estf(nx1,ny1,nx2,ny2, no_matches,m3);
% ne = torr_errf2(f_torr,x1,y1,x2,y2, no_matches, m3);
% disp('noisy error on noise free points')
% sse_n = norm(ne(20:no_matches-20))
%disp('trace = 1, trace =0, ls, det = 1, 2x2 = 1, 2x2 =1')
best_method_array(methods_used)'
(method_sse(methods_used)/(no_tests*length(x1)))'
(method_n_sse(methods_used)/(no_tests*length(x1)))'
percent_gain = 1 - method_sse(methods_used(1))/method_sse(methods_used(2));
percent_gain
disp('distance to true epipole');
(epipole_distance(methods_used)/no_tests)'
ep_percent_gain = 1 - epipole_distance(methods_used(1))/epipole_distance(methods_used(2));
ep_percent_gain
%oo_vicar
%display_mat(perfect_matches, x1,y1, u1, v1)
%
% e = fm_error_hs(F, n1, n2, nowarn);
%torr_display_epipoles(nF,nF,perfect_matches, x1,y1, u1, v1)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -