⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 core.h

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 H
字号:
/* * This header file contains simple Read/Write macros for addressing the SDRAM, * devices, GT`s internal registers and PCI (using the PCI`s address space). * * Copyright Galileo Technology. */#ifndef __INCcoreh#define __INCcoreh#include <linux/types.h>#include <asm/byteorder.h>#include <asm/gt64120.h>#define INTERNAL_REG_BASE_ADDR 0x14000000#define NO_BIT          0x00000000#define BIT0            0x00000001#define BIT1            0x00000002#define BIT2            0x00000004#define BIT3            0x00000008#define BIT4            0x00000010#define BIT5            0x00000020#define BIT6            0x00000040#define BIT7            0x00000080#define BIT8            0x00000100#define BIT9            0x00000200#define BIT10           0x00000400#define BIT11           0x00000800#define BIT12           0x00001000#define BIT13           0x00002000#define BIT14           0x00004000#define BIT15           0x00008000#define BIT16           0x00010000#define BIT17           0x00020000#define BIT18           0x00040000#define BIT19           0x00080000#define BIT20           0x00100000#define BIT21           0x00200000#define BIT22           0x00400000#define BIT23           0x00800000#define BIT24           0x01000000#define BIT25           0x02000000#define BIT26           0x04000000#define BIT27           0x08000000#define BIT28           0x10000000#define BIT29           0x20000000#define BIT30           0x40000000#define BIT31           0x80000000#define _1K             0x00000400#define _2K             0x00000800#define _4K             0x00001000#define _8K             0x00002000#define _16K            0x00004000#define _32K            0x00008000#define _64K            0x00010000#define _128K           0x00020000#define _256K           0x00040000#define _512K           0x00080000#define _1M             0x00100000#define _2M             0x00200000#define _3M             0x00300000#define _4M             0x00400000#define _5M             0x00500000#define _6M             0x00600000#define _7M             0x00700000#define _8M             0x00800000#define _9M             0x00900000#define _10M            0x00a00000#define _11M            0x00b00000#define _12M            0x00c00000#define _13M            0x00d00000#define _14M            0x00e00000#define _15M            0x00f00000#define _16M            0x01000000typedef enum _bool{false,true} bool;#ifndef NULL#define NULL 0#endif/* The two following defines are according to MIPS architecture. */#define NONE_CACHEABLE			0xa0000000#define MIPS_CACHEABLE			0x80000000/* Read/Write to/from GT`s internal registers */#define GT_REG_READ(offset, pData)					\do {									\	*pData = (*((u32 *)(NONE_CACHEABLE |				\		INTERNAL_REG_BASE_ADDR | (offset))));			\	*pData = cpu_to_le32(*pData);					\} while(0)#define GT_REG_WRITE(offset, data)					\	(*((u32 *)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |		\		(offset))) = cpu_to_le32(data))#define VIRTUAL_TO_PHY(y)	((u32)(y) & (u32)0x5fffffff)#define PHY_TO_VIRTUAL(y)	((u32)(y) | NONE_CACHEABLE)/* Write 32/16/8 bit Non-Cache-able */#define WRITE_CHAR(address, data)					\	(*((u8 *)((address) | NONE_CACHEABLE)) = (data))#define WRITE_SHORT(address, data)					\	(*((u16 *)((address) | NONE_CACHEABLE)) = (u16) data)#define WRITE_WORD(address, data)					\	(*((u32 *)((address) | NONE_CACHEABLE)) = (u32) data)/* Write 32/16/8 bits Cacheable */#define WRITE_CHAR_CACHEABLE(address, data)				\	(*((u8 *)((address) | MIPS_CACHEABLE)) = (data))#define WRITE_SHORT_CACHEABLE(address, data)				\	(*((u16 *)((address) | MIPS_CACHEABLE)) = (u16) data)#define WRITE_WORD_CACHEABLE(address, data)				\	(*((u32 *)((address) | MIPS_CACHEABLE )) = (u32) data)/* Read 32/16/8 bits NonCacheable - returns data in variable. */#define READ_CHAR(address,pData)					\	(*(pData) = *((u8 *)((address) | NONE_CACHEABLE)))#define READ_SHORT(address,pData)					\	(*(pData) = *((u16 *)((address) | NONE_CACHEABLE)))#define READ_WORD(address,pData)					\	(*(pData) = *((u32 *)((address) | NONE_CACHEABLE)))/* Read 32/16/8 bit NonCacheable - returns data direct. */#define READCHAR(address)						\	(*((u8 *)((address) | NONE_CACHEABLE)))#define READSHORT(address)						\	(*((u16 *)((address) | NONE_CACHEABLE)))#define READWORD(address)						\        (*((u32 *)((address) | NONE_CACHEABLE)))/* Read 32/16/8 bit Cacheable - returns data in variable. */#define READ_CHAR_CACHEABLE(address,pData)				\        (*(pData) = *((u8 *)((address) | MIPS_CACHEABLE)))#define READ_SHORT_CACHEABLE(address,pData)				\        (*(pData) = *((u16 *)((address) | MIPS_CACHEABLE)))#define READ_WORD_CACHEABLE(address,pData)				\        (*(pData) = *((u32 *)((address) | MIPS_CACHEABLE)))/* Read 32/16/8 bit Cacheable - returns data direct. */#define READCHAR_CACHEABLE(address)					\	(*((u8 *)((address) | MIPS_CACHEABLE)))#define READSHORT_CACHEABLE(address)					\	(*((u16 *)((address) | MIPS_CACHEABLE)))#define READWORD_CACHEABLE(address)					\	(*((u32 *)((address) | MIPS_CACHEABLE)))/* * SET_REG_BITS(regOffset,bits) - * gets register offset and bits: a 32bit value. It set to logic '1' in the * internal register the bits which given as an input example: * SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic * '1' in register 0x840 while the other bits stays as is. */#define SET_REG_BITS(regOffset,bits)					\	(*(u32*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |		\		(regOffset)) |= (u32)cpu_to_le32(bits))/* * RESET_REG_BITS(regOffset,bits) - * gets register offset and bits: a 32bit value. It set to logic '0' in the * internal register the bits which given as an input example: * RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic * '0' in register 0x840 while the other bits stays as is. */#define RESET_REG_BITS(regOffset,bits)					\	(*(u32 *)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR |		\		(regOffset)) &= ~((u32)cpu_to_le32(bits)))#endif /* __INCcoreh */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -