⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fec.c

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * BK Id: %F% %I% %G% %U% %#% *//* * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * This version of the driver is specific to the FADS implementation, * since the board contains control registers external to the processor * for the control of the LevelOne LXT970 transceiver.  The MPC860T manual * describes connections using the internal parallel port I/O, which * is basically all of Port D. * * Includes support for the following PHYs: QS6612, LXT970, LXT971/2. * * Right now, I am very wasteful with the buffers.  I allocate memory * pages and then divide them into 2K frame buffers.  This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * * Much better multiple PHY support by Magnus Damm. * Copyright (c) 2000 Ericsson Radio Systems AB. * * Make use of MII for PHY control configurable. * Some fixes. * Copyright (c) 2000 Wolfgang Denk, DENX Software Engineering. *//* List of PHYs we wish to support.*/#undef	CONFIG_FEC_LXT970#define	CONFIG_FEC_LXT971#undef	CONFIG_FEC_QS6612#undef	CONFIG_FEC_DP83843#undef	CONFIG_FEC_DP83846A#include <linux/config.h>#include <linux/kernel.h>#include <linux/sched.h>#include <linux/string.h>#include <linux/ptrace.h>#include <linux/errno.h>#include <linux/ioport.h>#include <linux/slab.h>#include <linux/interrupt.h>#include <linux/pci.h>#include <linux/init.h>#include <linux/delay.h>#include <linux/netdevice.h>#include <linux/etherdevice.h>#include <linux/skbuff.h>#include <linux/spinlock.h>#include <linux/mii.h>#include <linux/ethtool.h>#include <asm/8xx_immap.h>#include <asm/pgtable.h>#include <asm/mpc8xx.h>#include <asm/irq.h>#include <asm/bitops.h>#include <asm/uaccess.h>#include <asm/commproc.h>#ifdef	CONFIG_USE_MDIO/* Forward declarations of some structures to support different PHYs*/typedef struct {	uint mii_data;	void (*funct)(uint mii_reg, struct net_device *dev, uint data);} phy_cmd_t;typedef struct {	uint id;	char *name;	const phy_cmd_t *config;	const phy_cmd_t *startup;	const phy_cmd_t *ack_int;	const phy_cmd_t *shutdown;} phy_info_t;#endif	/* CONFIG_USE_MDIO *//* The number of Tx and Rx buffers.  These are allocated from the page * pool.  The code may assume these are power of two, so it is best * to keep them that size. * We don't need to allocate pages for the transmitter.  We just use * the skbuffer directly. */#ifdef CONFIG_ENET_BIG_BUFFERS#define FEC_ENET_RX_PAGES	16#define FEC_ENET_RX_FRSIZE	2048#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)#define TX_RING_SIZE		16	/* Must be power of two */#define TX_RING_MOD_MASK	15	/*   for this to work */#else#define FEC_ENET_RX_PAGES	4#define FEC_ENET_RX_FRSIZE	2048#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)#define TX_RING_SIZE		8	/* Must be power of two */#define TX_RING_MOD_MASK	7	/*   for this to work */#endif/* Interrupt events/masks.*/#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error *//**/#define FEC_ECNTRL_PINMUX	0x00000004#define FEC_ECNTRL_ETHER_EN	0x00000002#define FEC_ECNTRL_RESET	0x00000001#define FEC_RCNTRL_BC_REJ	0x00000010#define FEC_RCNTRL_PROM		0x00000008#define FEC_RCNTRL_MII_MODE	0x00000004#define FEC_RCNTRL_DRT		0x00000002#define FEC_RCNTRL_LOOP		0x00000001#define FEC_TCNTRL_FDEN		0x00000004#define FEC_TCNTRL_HBC		0x00000002#define FEC_TCNTRL_GTS		0x00000001/* Delay to wait for FEC reset command to complete (in us)*/#define FEC_RESET_DELAY		50/* The FEC stores dest/src/type, data, and checksum for receive packets. */#define PKT_MAXBUF_SIZE		1518#define PKT_MINBUF_SIZE		64#define PKT_MAXBLR_SIZE		1520/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors.  The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller.  The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions.  The empty/ready indicator in * the buffer descriptor determines the actual condition. */struct fec_enet_private {	/* The saved address of a sent-in-place packet/buffer, for skfree(). */	struct	sk_buff* tx_skbuff[TX_RING_SIZE];	ushort	skb_cur;	ushort	skb_dirty;	/* CPM dual port RAM relative addresses.	*/	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */	cbd_t	*tx_bd_base;	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */	scc_t	*sccp;	struct	net_device_stats stats;	uint	tx_full;	spinlock_t lock;#ifdef	CONFIG_USE_MDIO	uint	phy_id;	uint	phy_id_done;	uint	phy_status;	uint	phy_speed;	phy_info_t	*phy;	struct tq_struct phy_task;	uint	sequence_done;	uint	phy_addr;	struct timer_list phy_timer_list;	u16 old_status;#endif	/* CONFIG_USE_MDIO */	int	link;	int	old_link;	int	full_duplex;};static int fec_enet_open(struct net_device *dev);static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);#ifdef	CONFIG_USE_MDIOstatic void fec_enet_mii(struct net_device *dev);#endif	/* CONFIG_USE_MDIO */static void fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);static void  fec_enet_tx(struct net_device *dev);static void  fec_enet_rx(struct net_device *dev);static int fec_enet_close(struct net_device *dev);static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);static void set_multicast_list(struct net_device *dev);static void fec_restart(struct net_device *dev, int duplex);static void fec_stop(struct net_device *dev);static	ushort	my_enet_addr[3];#ifdef	CONFIG_USE_MDIOstatic int fec_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr);static void mdio_callback(uint regval, struct net_device *dev, uint data);static int mdio_read(struct net_device *dev, int phy_id, int location);#if defined(CONFIG_FEC_DP83846A)static void mdio_timer_callback(unsigned long data);#endif /* CONFIG_FEC_DP83846A *//* MII processing.  We keep this as simple as possible.  Requests are * placed on the list (if there is room).  When the request is finished * by the MII, an optional function may be called. */typedef struct mii_list {	uint	mii_regval;	void	(*mii_func)(uint val, struct net_device *dev, uint data);	struct	mii_list *mii_next;	uint	mii_data;} mii_list_t;#define		NMII	20mii_list_t	mii_cmds[NMII];mii_list_t	*mii_free;mii_list_t	*mii_head;mii_list_t	*mii_tail;typedef struct mdio_read_data {	u16 regval;	struct task_struct *sleeping_task;} mdio_read_data_t;static int	mii_queue(struct net_device *dev, int request,				void (*func)(uint, struct net_device *, uint), uint data);static void mii_queue_relink(uint mii_reg, struct net_device *dev, uint data);/* Make MII read/write commands for the FEC.*/#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \						(VAL & 0xffff))#define mk_mii_end	0#endif	/* CONFIG_USE_MDIO *//* Transmitter timeout.*/#define TX_TIMEOUT (2*HZ)#ifdef	CONFIG_USE_MDIO/* Register definitions for the PHY.*/#define MII_REG_CR          0  /* Control Register                         */#define MII_REG_SR          1  /* Status Register                          */#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */#define MII_REG_ANAR        4  /* A-N Advertisement Register               */#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */#define MII_REG_ANER        6  /* A-N Expansion Register                   */#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. *//* values for phy_status */#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/#define PHY_STAT_SPMASK	0xf000  /* mask for speed */#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */#endif	/* CONFIG_USE_MDIO */static intfec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev){	struct fec_enet_private *fep;	volatile fec_t	*fecp;	volatile cbd_t	*bdp;	fep = dev->priv;	fecp = (volatile fec_t*)dev->base_addr;	if (!fep->link) {		/* Link is down or autonegotiation is in progress. */		return 1;	}	/* Fill in a Tx ring entry */	bdp = fep->cur_tx;#ifndef final_version	if (bdp->cbd_sc & BD_ENET_TX_READY) {		/* Ooops.  All transmit buffers are full.  Bail out.		 * This should not happen, since dev->tbusy should be set.		 */		printk("%s: tx queue full!.\n", dev->name);		return 1;	}#endif	/* Clear all of the status flags.	 */	bdp->cbd_sc &= ~BD_ENET_TX_STATS;	/* Set buffer length and buffer pointer.	*/	bdp->cbd_bufaddr = __pa(skb->data);	bdp->cbd_datlen = skb->len;	/* Save skb pointer.	*/	fep->tx_skbuff[fep->skb_cur] = skb;	fep->stats.tx_bytes += skb->len;	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;	/* Push the data cache so the CPM does not get stale memory	 * data.	 */	flush_dcache_range((unsigned long)skb->data,			   (unsigned long)skb->data + skb->len);	spin_lock_irq(&fep->lock);	/* Send it on its way.  Tell FEC its ready, interrupt when done,	 * its the last BD of the frame, and to put the CRC on the end.	 */	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR			| BD_ENET_TX_LAST | BD_ENET_TX_TC);	dev->trans_start = jiffies;	/* Trigger transmission start */	fecp->fec_x_des_active = 0x01000000;	/* If this was the last BD in the ring, start at the beginning again.	*/	if (bdp->cbd_sc & BD_ENET_TX_WRAP) {		bdp = fep->tx_bd_base;	} else {		bdp++;	}	if (bdp->cbd_sc & BD_ENET_TX_READY) {		netif_stop_queue(dev);		fep->tx_full = 1;	}	fep->cur_tx = (cbd_t *)bdp;	spin_unlock_irq(&fep->lock);	return 0;}static voidfec_timeout(struct net_device *dev){	struct fec_enet_private *fep = dev->priv;	printk("%s: transmit timed out.\n", dev->name);	fep->stats.tx_errors++;#ifndef final_version	{	int	i;	cbd_t	*bdp;	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",	       (unsigned long)fep->dirty_tx,	       (unsigned long)fep->cur_rx);	bdp = fep->tx_bd_base;	printk(" tx: %u buffers\n",  TX_RING_SIZE);	for (i = 0 ; i < TX_RING_SIZE; i++) {		printk("  %08x: %04x %04x %08x\n",		       (uint) bdp,		       bdp->cbd_sc,		       bdp->cbd_datlen,		       bdp->cbd_bufaddr);		bdp++;	}	bdp = fep->rx_bd_base;	printk(" rx: %lu buffers\n",  RX_RING_SIZE);	for (i = 0 ; i < RX_RING_SIZE; i++) {		printk("  %08x: %04x %04x %08x\n",		       (uint) bdp,		       bdp->cbd_sc,		       bdp->cbd_datlen,		       bdp->cbd_bufaddr);		bdp++;	}	}#endif	if (!fep->tx_full)		netif_wake_queue(dev);}/* The interrupt handler. * This is called from the MPC core interrupt. */static	voidfec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs){	struct	net_device *dev = dev_id;	volatile fec_t	*fecp;	uint	int_events;	fecp = (volatile fec_t*)dev->base_addr;	/* Get the interrupt events that caused us to be here.	*/	while ((int_events = fecp->fec_ievent) != 0) {		fecp->fec_ievent = int_events;		if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |				   FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {			printk("FEC ERROR %x\n", int_events);		}		/* Handle receive event in its own function.		 */		if (int_events & FEC_ENET_RXF)			fec_enet_rx(dev);		/* Transmit OK, or non-fatal error. Update the buffer		   descriptors. FEC handles all errors, we just discover		   them as part of the transmit process.		*/		if (int_events & FEC_ENET_TXF)			fec_enet_tx(dev);		if (int_events & FEC_ENET_MII) {#ifdef	CONFIG_USE_MDIO			fec_enet_mii(dev);#elseprintk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__,__LINE__,__FUNCTION__);#endif	/* CONFIG_USE_MDIO */		}	}}static voidfec_enet_tx(struct net_device *dev){	struct	fec_enet_private *fep;	volatile cbd_t	*bdp;	struct	sk_buff	*skb;	fep = dev->priv;	spin_lock(&fep->lock);	bdp = fep->dirty_tx;	while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {		if (bdp == fep->cur_tx && fep->tx_full == 0) break;		skb = fep->tx_skbuff[fep->skb_dirty];		/* Check for errors. */		if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |				   BD_ENET_TX_RL | BD_ENET_TX_UN |				   BD_ENET_TX_CSL)) {			fep->stats.tx_errors++;			if (bdp->cbd_sc & BD_ENET_TX_HB)  /* No heartbeat */				fep->stats.tx_heartbeat_errors++;			if (bdp->cbd_sc & BD_ENET_TX_LC)  /* Late collision */				fep->stats.tx_window_errors++;			if (bdp->cbd_sc & BD_ENET_TX_RL)  /* Retrans limit */				fep->stats.tx_aborted_errors++;			if (bdp->cbd_sc & BD_ENET_TX_UN)  /* Underrun */				fep->stats.tx_fifo_errors++;			if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */				fep->stats.tx_carrier_errors++;		} else			fep->stats.tx_packets++;#ifndef final_version		if (bdp->cbd_sc & BD_ENET_TX_READY)			printk("HEY! Enet xmit interrupt and TX_READY.\n");#endif		/* Deferred means some collisions occurred during transmit,		 * but we eventually sent the packet OK.		 */		if (bdp->cbd_sc & BD_ENET_TX_DEF)			fep->stats.collisions++;		/* Free the sk buffer associated with this last transmit.		 */#if 0printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty);#endif		dev_kfree_skb_irq (skb/*, FREE_WRITE*/);		fep->tx_skbuff[fep->skb_dirty] = NULL;		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;		/* Update pointer to next buffer descriptor to be transmitted.		 */		if (bdp->cbd_sc & BD_ENET_TX_WRAP)			bdp = fep->tx_bd_base;		else			bdp++;		/* Since we have freed up a buffer, the ring is no longer		 * full.		 */		if (fep->tx_full) {			fep->tx_full = 0;			if (netif_queue_stopped(dev))

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -