📄 time.c
字号:
"set_rtc_mmss: can't update from %d to %d\n", cmos_minutes, real_minutes); retval = -1; } return retval;}/* Excerpt from the Etrax100 HSDD about the built-in watchdog: * * 3.10.4 Watchdog timer * When the watchdog timer is started, it generates an NMI if the watchdog * isn't restarted or stopped within 0.1 s. If it still isn't restarted or * stopped after an additional 3.3 ms, the watchdog resets the chip. * The watchdog timer is stopped after reset. The watchdog timer is controlled * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is * described in the table below: * * Watchdog Value written: * state: To enable: To key: Operation: * -------- ---------- ------- ---------- * stopped 0 X No effect. * stopped 1 key_val Start watchdog with key = key_val. * started 0 ~key Stop watchdog * started 1 ~key Restart watchdog with key = ~key. * started X new_key_val Change key to new_key_val. * * Note: '~' is the bitwise NOT operator. * *//* right now, starting the watchdog is the same as resetting it */#define start_watchdog reset_watchdog#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)static int watchdog_key = 0; /* arbitrary number */#endif/* number of pages to consider "out of memory". it is normal that the memory * is used though, so put this really low. */#define WATCHDOG_MIN_FREE_PAGES 8voidreset_watchdog(void){#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) /* only keep watchdog happy as long as we have memory left! */ if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) { /* reset the watchdog with the inverse of the old key */ watchdog_key ^= 0x7; /* invert key, which is 3 bits */ *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | IO_STATE(R_WATCHDOG, enable, start); }#endif}/* stop the watchdog - we still need the correct key */void stop_watchdog(void){#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) watchdog_key ^= 0x7; /* invert key, which is 3 bits */ *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) | IO_STATE(R_WATCHDOG, enable, stop);#endif }/* last time the cmos clock got updated */static long last_rtc_update = 0;/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick *///static unsigned short myjiff; /* used by our debug routine print_timestamp */static inline voidtimer_interrupt(int irq, void *dev_id, struct pt_regs *regs){ /* acknowledge the timer irq */#ifdef USE_CASCADE_TIMERS *R_TIMER_CTRL = IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | IO_STATE( R_TIMER_CTRL, i1, clr) | IO_STATE( R_TIMER_CTRL, tm1, run) | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | IO_STATE( R_TIMER_CTRL, i0, clr) | IO_STATE( R_TIMER_CTRL, tm0, run) | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);#else *R_TIMER_CTRL = r_timer_ctrl_shadow | IO_STATE(R_TIMER_CTRL, i0, clr);#endif /* reset watchdog otherwise it resets us! */ reset_watchdog(); /* call the real timer interrupt handler */ do_timer(regs); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec > 500000 - (tick >> 1) && xtime.tv_usec < 500000 + (tick >> 1)) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; }}#if 0/* some old debug code for testing the microsecond timing of packets */static unsigned int lastjiff;void print_timestamp(const char *s){ unsigned long flags; unsigned int newjiff; save_flags(flags); cli(); newjiff = (myjiff << 16) | (unsigned short)(-*R_TIMER01_DATA); printk("%s: %x (%x)\n", s, newjiff, newjiff - lastjiff); lastjiff = newjiff; restore_flags(flags);}#endif/* grab the time from the RTC chip */unsigned longget_cmos_time(void){ unsigned int year, mon, day, hour, min, sec; sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); printk("rtc: sec 0x%x min 0x%x hour 0x%x day 0x%x mon 0x%x year 0x%x\n", sec, min, hour, day, mon, year); BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); if ((year += 1900) < 1970) year += 100; return mktime(year, mon, day, hour, min, sec);}/* update xtime from the CMOS settings. used when /dev/rtc gets a SET_TIME. * TODO: this doesn't reset the fancy NTP phase stuff as do_settimeofday does. */voidupdate_xtime_from_cmos(void){ if(have_rtc) { xtime.tv_sec = get_cmos_time(); xtime.tv_usec = 0; }}/* timer is SA_SHIRQ so drivers can add stuff to the timer irq chain * it needs to be SA_INTERRUPT to make the jiffies update work properly */static struct irqaction irq2 = { timer_interrupt, SA_SHIRQ | SA_INTERRUPT, 0, "timer", NULL, NULL};void __inittime_init(void){ /* Probe for the RTC and read it if it exists * Before the RTC can be probed the loops_per_usec variable needs * to be initialized to make usleep work. A better value for * loops_per_usec is calculated by the kernel later once the * clock has started. */ loops_per_usec = 50; if(RTC_INIT() < 0) { /* no RTC, start at the Epoch (00:00:00 UTC, January 1, 1970) */ xtime.tv_sec = 0; xtime.tv_usec = 0; have_rtc = 0; } else { /* get the current time */ have_rtc = 1; update_xtime_from_cmos(); } /* Setup the etrax timers * Base frequency is 19200 hz, divider 192 -> 100 hz as Linux wants * In normal mode, we use timer0, so timer1 is free. In cascade * mode (which we sometimes use for debugging) both timers are used. * Remember that linux/timex.h contains #defines that rely on the * timer settings below (hz and divide factor) !!! */ #ifdef USE_CASCADE_TIMERS *R_TIMER_CTRL = IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | IO_STATE( R_TIMER_CTRL, i1, nop) | IO_STATE( R_TIMER_CTRL, tm1, stop_ld) | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | IO_STATE( R_TIMER_CTRL, i0, nop) | IO_STATE( R_TIMER_CTRL, tm0, stop_ld) | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); *R_TIMER_CTRL = r_timer_ctrl_shadow = IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | IO_STATE( R_TIMER_CTRL, i1, nop) | IO_STATE( R_TIMER_CTRL, tm1, run) | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | IO_STATE( R_TIMER_CTRL, i0, nop) | IO_STATE( R_TIMER_CTRL, tm0, run) | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);#else *R_TIMER_CTRL = IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | IO_STATE(R_TIMER_CTRL, i1, nop) | IO_STATE(R_TIMER_CTRL, tm1, stop_ld) | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | IO_STATE(R_TIMER_CTRL, i0, nop) | IO_STATE(R_TIMER_CTRL, tm0, stop_ld) | IO_STATE(R_TIMER_CTRL, clksel0, flexible); *R_TIMER_CTRL = r_timer_ctrl_shadow = IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) | IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) | IO_STATE(R_TIMER_CTRL, i1, nop) | IO_STATE(R_TIMER_CTRL, tm1, run) | IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) | IO_STATE(R_TIMER_CTRL, i0, nop) | IO_STATE(R_TIMER_CTRL, tm0, run) | IO_STATE(R_TIMER_CTRL, clksel0, flexible); *R_TIMER_PRESCALE = PRESCALE_VALUE;#endif#if CRIS_TEST_TIMERS cris_test_timers();#endif *R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */ /* now actually register the timer irq handler that calls timer_interrupt() */ setup_etrax_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */ /* enable watchdog if we should use one */#if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM) printk("Enabling watchdog...\n"); start_watchdog(); /* If we use the hardware watchdog, we want to trap it as an NMI and dump registers before it resets us. For this to happen, we must set the "m" NMI enable flag (which once set, is unset only when an NMI is taken). The same goes for the external NMI, but that doesn't have any driver or infrastructure support yet. */ asm ("setf m"); *R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set); *R_VECT_MASK_SET = IO_STATE(R_VECT_MASK_SET, nmi, set);#endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -