⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 axisflashmap.c

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 C
字号:
/* * Physical mapping layer for MTD using the Axis partitiontable format * * Copyright (c) 2001, 2002 Axis Communications AB * * This file is under the GPL. * * First partition is always sector 0 regardless of if we find a partitiontable * or not. In the start of the next sector, there can be a partitiontable that * tells us what other partitions to define. If there isn't, we use a default * partition split defined below. * * $Log: axisflashmap.c,v $ * Revision 1.28  2002/10/01 08:08:43  jonashg * The first partition ends at the start of the partition table. * * Revision 1.27  2002/08/21 09:23:13  jonashg * Speling. * * Revision 1.26  2002/08/21 08:35:20  jonashg * Cosmetic change to printouts. * * Revision 1.25  2002/08/21 08:15:42  jonashg * Made it compile even without CONFIG_MTD_CONCAT defined. * * Revision 1.24  2002/08/20 13:12:35  jonashg * * New approach to probing. Probe cse0 and cse1 separately and (mtd)concat *   the results. * * Removed compile time tests concerning how the mtdram driver has been *   configured. The user will know about the misconfiguration at runtime *   instead. (The old approach made it impossible to use mtdram for anything *   else than RAM boot). * * Revision 1.23  2002/05/13 12:12:28  johana * Allow compile without CONFIG_MTD_MTDRAM but warn at compiletime and * be informative at runtime. * * Revision 1.22  2002/05/13 10:24:44  johana * Added #if checks on MTDRAM CONFIG * * Revision 1.21  2002/05/06 16:05:20  johana * Removed debug printout. * * Revision 1.20  2002/05/06 16:03:00  johana * No more cramfs as root hack in generic code. * It's handled by axisflashmap using mtdram. * * Revision 1.19  2002/03/15 17:10:28  bjornw * Changed comment about cached access since we changed this before * * Revision 1.18  2002/03/05 17:06:15  jonashg * Try amd_flash probe before cfi_probe since amd_flash driver can handle two * (or more) flash chips of different model and the cfi driver cannot. * * Revision 1.17  2001/11/12 19:42:38  pkj * Fixed compiler warnings. * * Revision 1.16  2001/11/08 11:18:58  jonashg * Always read from uncached address to avoid problems with flushing * cachelines after write and MTD-erase. No performance loss have been * seen yet. * * Revision 1.15  2001/10/19 12:41:04  jonashg * Name of probe has changed in MTD. * * Revision 1.14  2001/09/21 07:14:10  jonashg * Made root filesystem (cramfs) use mtdblock driver when booting from flash. * * Revision 1.13  2001/08/15 13:57:35  jonashg * Entire MTD updated to the linux 2.4.7 version. * * Revision 1.12  2001/06/11 09:50:30  jonashg * Oops, 2MB is 0x200000 bytes. * * Revision 1.11  2001/06/08 11:39:44  jonashg * Changed sizes and offsets in axis_default_partitions to use * CONFIG_ETRAX_PTABLE_SECTOR. * * Revision 1.10  2001/05/29 09:42:03  jonashg * Use macro for end marker length instead of sizeof. * * Revision 1.9  2001/05/29 08:52:52  jonashg * Gave names to the magic fours (size of the ptable end marker). * * Revision 1.8  2001/05/28 15:36:20  jonashg * * Removed old comment about ptable location in flash (it's a CONFIG_ option). * * Variable ptable was initialized twice to the same value. * * Revision 1.7  2001/04/05 13:41:46  markusl * Updated according to review remarks * * Revision 1.6  2001/03/07 09:21:21  bjornw * No need to waste .data * * Revision 1.5  2001/03/06 16:27:01  jonashg * Probe the entire flash area for flash devices. * * Revision 1.4  2001/02/23 12:47:15  bjornw * Uncached flash in LOW_MAP moved from 0xe to 0x8 * * Revision 1.3  2001/02/16 12:11:45  jonashg * MTD driver amd_flash is now included in MTD CVS repository. * (It's now in drivers/mtd). * * Revision 1.2  2001/02/09 11:12:22  jonashg * Support for AMD compatible non-CFI flash chips. * Only tested with Toshiba TC58FVT160 so far. * * Revision 1.1  2001/01/12 17:01:18  bjornw * * Added axisflashmap.c, a physical mapping for MTD that reads and understands *   Axis partition-table format. * * */#include <linux/module.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/config.h>#include <linux/mtd/concat.h>#include <linux/mtd/map.h>#include <linux/mtd/mtd.h>#include <linux/mtd/mtdram.h>#include <linux/mtd/partitions.h>#include <asm/axisflashmap.h>#include <asm/mmu.h>#include <asm/sv_addr_ag.h>#ifdef CONFIG_CRIS_LOW_MAP#define FLASH_UNCACHED_ADDR  KSEG_8#define FLASH_CACHED_ADDR    KSEG_5#else#define FLASH_UNCACHED_ADDR  KSEG_E#define FLASH_CACHED_ADDR    KSEG_F#endif/* From head.S */extern unsigned long romfs_start, romfs_length, romfs_in_flash;/* Map driver functions. */static __u8 flash_read8(struct map_info *map, unsigned long ofs){	return *(__u8 *)(map->map_priv_1 + ofs);}static __u16 flash_read16(struct map_info *map, unsigned long ofs){	return *(__u16 *)(map->map_priv_1 + ofs);}static __u32 flash_read32(struct map_info *map, unsigned long ofs){	return *(volatile unsigned int *)(map->map_priv_1 + ofs);}static void flash_copy_from(struct map_info *map, void *to,			    unsigned long from, ssize_t len){	memcpy(to, (void *)(map->map_priv_1 + from), len);}static void flash_write8(struct map_info *map, __u8 d, unsigned long adr){	*(__u8 *)(map->map_priv_1 + adr) = d;}static void flash_write16(struct map_info *map, __u16 d, unsigned long adr){	*(__u16 *)(map->map_priv_1 + adr) = d;}static void flash_write32(struct map_info *map, __u32 d, unsigned long adr){	*(__u32 *)(map->map_priv_1 + adr) = d;}/* * The map for chip select e0. * * We run into tricky coherence situations if we mix cached with uncached * accesses to we only use the uncached version here. * * The size field is the total size where the flash chips may be mapped on the * chip select. MTD probes should find all devices there and it does not matter * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD * probes will ignore them. * * The start address in map_priv_1 is in virtual memory so we cannot use * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start * address of cse0. */static struct map_info map_cse0 = {	name: "cse0",	size: MEM_CSE0_SIZE,	buswidth: CONFIG_ETRAX_FLASH_BUSWIDTH,	read8: flash_read8,	read16: flash_read16,	read32: flash_read32,	copy_from: flash_copy_from,	write8: flash_write8,	write16: flash_write16,	write32: flash_write32,	map_priv_1: FLASH_UNCACHED_ADDR};/* * The map for chip select e1. * * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong * address, but there isn't. */static struct map_info map_cse1 = {	name: "cse1",	size: MEM_CSE1_SIZE,	buswidth: CONFIG_ETRAX_FLASH_BUSWIDTH,	read8: flash_read8,	read16: flash_read16,	read32: flash_read32,	copy_from: flash_copy_from,	write8: flash_write8,	write16: flash_write16,	write32: flash_write32,	map_priv_1: FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE};/* If no partition-table was found, we use this default-set. */#define MAX_PARTITIONS         7  #define NUM_DEFAULT_PARTITIONS 3/* * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the * size of one flash block and "filesystem"-partition needs 5 blocks to be able * to use JFFS. */static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {	{		name: "boot firmware",		size: CONFIG_ETRAX_PTABLE_SECTOR,		offset: 0	},	{		name: "kernel",		size: 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),		offset: CONFIG_ETRAX_PTABLE_SECTOR	},	{		name: "filesystem",		size: 5 * CONFIG_ETRAX_PTABLE_SECTOR,		offset: 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)	}};/* Initialize the ones normally used. */static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {	{		name: "part0",		size: CONFIG_ETRAX_PTABLE_SECTOR,		offset: 0	},	{		name: "part1",		size: 0,		offset: 0	},	{		name: "part2",		size: 0,		offset: 0	},	{		name: "part3",		size: 0,		offset: 0	},	{		name: "part4",		size: 0,		offset: 0	},	{		name: "part5",		size: 0,		offset: 0	},	{		name: "part6",		size: 0,		offset: 0	},};/* * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash * chips in that order (because the amd_flash-driver is faster). */static struct mtd_info *probe_cs(struct map_info *map_cs){	struct mtd_info *mtd_cs = NULL;	printk("%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",	       map_cs->name, map_cs->size, map_cs->map_priv_1);#ifdef CONFIG_MTD_AMDSTD	mtd_cs = do_map_probe("amd_flash", map_cs);#endif#ifdef CONFIG_MTD_CFI	if (!mtd_cs) {		mtd_cs = do_map_probe("cfi_probe", map_cs);	}#endif	return mtd_cs;}/*  * Probe each chip select individually for flash chips. If there are chips on * both cse0 and cse1, the mtd_info structs will be concatenated to one struct * so that MTD partitions can cross chip boundries. * * The only known restriction to how you can mount your chips is that each * chip select must hold similar flash chips. But you need external hardware * to do that anyway and you can put totally different chips on cse0 and cse1 * so it isn't really much of a restriction. */static struct mtd_info *flash_probe(void){	struct mtd_info *mtd_cse0;	struct mtd_info *mtd_cse1;	struct mtd_info *mtd_cse;	mtd_cse0 = probe_cs(&map_cse0);	mtd_cse1 = probe_cs(&map_cse1);	if (!mtd_cse0 && !mtd_cse1) {		/* No chip found. */		return NULL;	}	if (mtd_cse0 && mtd_cse1) {#ifdef CONFIG_MTD_CONCAT		struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };				/* Since the concatenation layer adds a small overhead we		 * could try to figure out if the chips in cse0 and cse1 are		 * identical and reprobe the whole cse0+cse1 window. But since		 * flash chips are slow, the overhead is relatively small.		 * So we use the MTD concatenation layer instead of further		 * complicating the probing procedure.		 */		mtd_cse = mtd_concat_create(mtds,					    sizeof(mtds) / sizeof(mtds[0]),					    "cse0+cse1");#else		printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "		       "(mis)configuration!\n", map_cse0.name, map_cse1.name);		mtd_cse = NULL;#endif		if (!mtd_cse) {			printk(KERN_ERR "%s and %s: Concatenation failed!\n",			       map_cse0.name, map_cse1.name);			/* The best we can do now is to only use what we found			 * at cse0.			 */ 			mtd_cse = mtd_cse0;			map_destroy(mtd_cse1);		}	} else {		mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;	}	return mtd_cse;}/* * Probe the flash chip(s) and, if it succeeds, read the partition-table * and register the partitions with MTD. */static int __init init_axis_flash(void){	struct mtd_info *mymtd;	int err = 0;	int pidx = 0;	struct partitiontable_head *ptable_head;	struct partitiontable_entry *ptable;	int use_default_ptable = 1; /* Until proven otherwise. */	const char *pmsg = "  /dev/flash%d at 0x%08x, size 0x%08x\n";	if (!(mymtd = flash_probe())) {		/* There's no reason to use this module if no flash chip can		 * be identified. Make sure that's understood.		 */		panic("axisflashmap found no flash chip!\n");	}	printk("%s: 0x%08x bytes of flash memory.\n",	       mymtd->name, mymtd->size);	mymtd->module = THIS_MODULE;	ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +		      CONFIG_ETRAX_PTABLE_SECTOR + PARTITION_TABLE_OFFSET);	pidx++;  /* First partition is always set to the default. */	if ((ptable_head->magic == PARTITION_TABLE_MAGIC)	    && (ptable_head->size <		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +		PARTITIONTABLE_END_MARKER_SIZE))	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +				  ptable_head->size -				  PARTITIONTABLE_END_MARKER_SIZE)		== PARTITIONTABLE_END_MARKER)) {		/* Looks like a start, sane length and end of a		 * partition table, lets check csum etc.		 */		int ptable_ok = 0;		struct partitiontable_entry *max_addr =			(struct partitiontable_entry *)			((unsigned long)ptable_head + sizeof(*ptable_head) +			 ptable_head->size);		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;		unsigned char *p;		unsigned long csum = 0;				ptable = (struct partitiontable_entry *)			((unsigned long)ptable_head + sizeof(*ptable_head));		/* Lets be PARANOID, and check the checksum. */		p = (unsigned char*) ptable;		while (p <= (unsigned char*)max_addr) {			csum += *p++;			csum += *p++;			csum += *p++;			csum += *p++;		}		ptable_ok = (csum == ptable_head->checksum);		/* Read the entries and use/show the info.  */		printk(" Found a%s partition table at 0x%p-0x%p.\n",		       (ptable_ok ? " valid" : "n invalid"), ptable_head,		       max_addr);		/* We have found a working bootblock.  Now read the		 * partition table.  Scan the table.  It ends when		 * there is 0xffffffff, that is, empty flash.		 */		while (ptable_ok		       && ptable->offset != 0xffffffff		       && ptable < max_addr		       && pidx < MAX_PARTITIONS) {			axis_partitions[pidx].offset = offset + ptable->offset;			axis_partitions[pidx].size = ptable->size;			printk(pmsg, pidx, axis_partitions[pidx].offset,			       axis_partitions[pidx].size);			pidx++;			ptable++;		}		use_default_ptable = !ptable_ok;	}	if (romfs_in_flash) {		/* Add an overlapping device for the root partition (romfs). */		axis_partitions[pidx].name = "romfs";		axis_partitions[pidx].size = romfs_length;		axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;		printk(" Adding readonly flash partition for romfs image:\n");		printk(pmsg, pidx, axis_partitions[pidx].offset,		       axis_partitions[pidx].size);		pidx++;	}	if (use_default_ptable) {		printk(" Using default partition table.\n");		err = add_mtd_partitions(mymtd, axis_default_partitions,		                         NUM_DEFAULT_PARTITIONS);	} else {		err = add_mtd_partitions(mymtd, axis_partitions, pidx);	}	if (err) {		panic("axisflashmap could not add MTD partitions!\n");	}	if (!romfs_in_flash) {		/* Create an RAM device for the root partition (romfs). */#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)		/* No use trying to boot this kernel from RAM. Panic! */		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "		       "device due to kernel (mis)configuration!\n");		panic("This kernel cannot boot from RAM!\n");#else		struct mtd_info *mtd_ram;		mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info),						     GFP_KERNEL);		if (!mtd_ram) {			panic("axisflashmap couldn't allocate memory for "			      "mtd_info!\n");		}		printk(" Adding RAM partition for romfs image:\n");		printk(pmsg, pidx, romfs_start, romfs_length);		err = mtdram_init_device(mtd_ram, (void*)romfs_start, 		                         romfs_length, "romfs");		if (err) {			panic("axisflashmap could not initialize MTD RAM "			      "device!\n");		}#endif	}	return err;}/* This adds the above to the kernels init-call chain. */module_init(init_axis_flash);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -