⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dbl_float.h

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 H
📖 第 1 页 / 共 3 页
字号:
/* * Linux/PA-RISC Project (http://www.parisc-linux.org/) * * Floating-point emulation code *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> * *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2, or (at your option) *    any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#ifdef __NO_PA_HDRS    PA header file -- do not include this header file for non-PA builds.#endif/* 32-bit word grabing functions */#define Dbl_firstword(value) Dallp1(value)#define Dbl_secondword(value) Dallp2(value)#define Dbl_thirdword(value) dummy_location#define Dbl_fourthword(value) dummy_location#define Dbl_sign(object) Dsign(object)#define Dbl_exponent(object) Dexponent(object)#define Dbl_signexponent(object) Dsignexponent(object)#define Dbl_mantissap1(object) Dmantissap1(object)#define Dbl_mantissap2(object) Dmantissap2(object)#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)#define Dbl_allp1(object) Dallp1(object)#define Dbl_allp2(object) Dallp2(object)/* dbl_and_signs ands the sign bits of each argument and puts the result * into the first argument. dbl_or_signs ors those same sign bits */#define Dbl_and_signs( src1dst, src2)		\    Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)#define Dbl_or_signs( src1dst, src2)		\    Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)/* The hidden bit is always the low bit of the exponent */#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)#define Dbl_clear_signexponent_set_hidden(srcdst) \    Deposit_dsignexponent(srcdst,1)#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)#define Dbl_clear_signexponent(srcdst) \    Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)/* Exponent field for doubles has already been cleared and may be * included in the shift.  Here we need to generate two double width * variable shifts.  The insignificant bits can be ignored. *      MTSAR f(varamount) *      VSHD	srcdst.high,srcdst.low => srcdst.low *	VSHD	0,srcdst.high => srcdst.high  * This is very difficult to model with C expressions since the shift amount * could exceed 32.  *//* varamount must be less than 64 */#define Dbl_rightshift(srcdstA, srcdstB, varamount)			\    {if((varamount) >= 32) {						\        Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\        Dallp1(srcdstA)=0;						\    }									\    else if(varamount > 0) {						\	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\	  (varamount), Dallp2(srcdstB));				\	Dallp1(srcdstA) >>= varamount;					\    } }/* varamount must be less than 64 */#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\    {if((varamount) >= 32) {						\        Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \    }									\    else if(varamount > 0) {						\	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \	(varamount), Dallp2(srcdstB));					\	Deposit_dexponentmantissap1(srcdstA,				\	    (Dexponentmantissap1(srcdstA)>>varamount));			\    } }/* varamount must be less than 64 */#define Dbl_leftshift(srcdstA, srcdstB, varamount)			\    {if((varamount) >= 32) {						\	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\	Dallp2(srcdstB)=0;						\    }									\    else {								\	if ((varamount) > 0) {						\	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\		(Dallp2(srcdstB) >> (32-(varamount)));			\	    Dallp2(srcdstB) <<= varamount;				\	}								\    } }#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\    Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\    Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))     #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\    Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \		  Extlow(right)#define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\    Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\    Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1   /* Sign extend the sign bit with an integer destination */#define Dbl_signextendedsign(value)  Dsignedsign(value)#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)/* Singles and doubles may include the sign and exponent fields.  The * hidden bit and the hidden overflow must be included. */#define Dbl_increment(dbl_valueA,dbl_valueB) \    if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \    if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \    Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)#define Dbl_decrement(dbl_valueA,dbl_valueB) \    if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \    Dallp2(dbl_valueB) -= 1#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \    (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \    (Dhiddenhigh7mantissa(dbl_value)!=0)#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \    (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \    (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \    Dallp2(dbl_valueB)==0)#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \    (Dhiddenhigh3mantissa(dbl_value)==0)#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \    (Dhiddenhigh7mantissa(dbl_value)==0)#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \    (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)#define Dbl_isinfinity_exponent(dbl_value)		\    (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)#define Dbl_isnotinfinity_exponent(dbl_value)		\    (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)#define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\    Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)#define Dbl_isnan(dbl_valueA,dbl_valueB)		\    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\    (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))#define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\    (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\      Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\      Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\      Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\      Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\     ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\      (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \    Dallp2(dbl_valueB) <<= 8#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \    Dallp2(dbl_valueB) <<= 7#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \    Dallp2(dbl_valueB) <<= 4#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \    Dallp2(dbl_valueB) <<= 3#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \    Dallp2(dbl_valueB) <<= 2#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \    Dallp2(dbl_valueB) <<= 1#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \    Dallp1(dbl_valueA) >>= 8#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \    Dallp1(dbl_valueA) >>= 4#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \    Dallp1(dbl_valueA) >>= 2#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \    Dallp1(dbl_valueA) >>= 1    /* This magnitude comparison uses the signless first words and * the regular part2 words.  The comparison is graphically: * *       1st greater?  ------------- *                                 | *       1st less?-----------------+--------- *                                 |        | *       2nd greater or equal----->|        | *                               False     True */#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\      ((signlessleft <= signlessright) &&				\       ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))    #define Dbl_copytoint_exponentmantissap1(src,dest) \    dest = Dexponentmantissap1(src)/* A quiet NaN has the high mantissa bit clear and at least on other (in this * case the adjacent bit) bit set. */#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)#define Dbl_set_mantissa(desta,destb,valuea,valueb)	\    Deposit_dmantissap1(desta,valuea);			\    Dmantissap2(destb) = Dmantissap2(valueb)#define Dbl_set_mantissap1(desta,valuea)		\    Deposit_dmantissap1(desta,valuea)#define Dbl_set_mantissap2(destb,valueb)		\    Dmantissap2(destb) = Dmantissap2(valueb)#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\    Deposit_dexponentmantissap1(desta,valuea);			\    Dmantissap2(destb) = Dmantissap2(valueb)#define Dbl_set_exponentmantissap1(dest,value)			\    Deposit_dexponentmantissap1(dest,value)#define Dbl_copyfromptr(src,desta,destb) \    Dallp1(desta) = src->wd0;		\    Dallp2(destb) = src->wd1 #define Dbl_copytoptr(srca,srcb,dest)	\    dest->wd0 = Dallp1(srca);		\    dest->wd1 = Dallp2(srcb)/*  An infinity is represented with the max exponent and a zero mantissa */#define Dbl_setinfinity_exponent(dbl_value) \    Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\    Deposit_dexponentmantissap1(dbl_valueA, 			\    (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\    Dmantissap2(dbl_valueB) = 0#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\    Dallp1(dbl_valueA) 						\        = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\    Dmantissap2(dbl_valueB) = 0#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\    Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\         (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\    Dmantissap2(dbl_valueB) = 0

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -