📄 fmpyfadd.c
字号:
/* * Now we are ready to perform the add portion of the operation. * * The exponents need to be kept as integers for now, since the * multiply result might not fit into the exponent field. We * can't overflow or underflow because of this yet, since the * add could bring the final result back into range. */ add_exponent = Sgl_exponent(opnd3); /* * Check for denormalized or zero add operand. */ if (add_exponent == 0) { /* check for zero */ if (Sgl_iszero_mantissa(opnd3)) { /* right is zero */ /* Left can't be zero and must be result. * * The final result is now in tmpres and mpy_exponent, * and needs to be rounded and squeezed back into * double precision format from double extended. */ result_exponent = mpy_exponent; Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ goto round; } /* * Neither are zeroes. * Adjust exponent and normalize add operand. */ sign_save = Sgl_signextendedsign(opnd3); /* save sign */ Sgl_clear_signexponent(opnd3); Sgl_leftshiftby1(opnd3); Sgl_normalize(opnd3,add_exponent); Sgl_set_sign(opnd3,sign_save); /* restore sign */ } else { Sgl_clear_exponent_set_hidden(opnd3); } /* * Copy opnd3 to the double extended variable called right. */ Sgl_copyto_sglext(opnd3,rightp1,rightp2); /* * A zero "save" helps discover equal operands (for later), * and is used in swapping operands (if needed). */ Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); /* * Compare magnitude of operands. */ Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); Sglext_copytoint_exponentmantissa(rightp1,signlessright1); if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && Sglext_ismagnitudeless(signlessleft1,signlessright1)) { /* * Set the left operand to the larger one by XOR swap. * First finish the first word "save". */ Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); Sglext_swap_lower(tmpresp2,rightp2); /* also setup exponents used in rest of routine */ diff_exponent = add_exponent - mpy_exponent; result_exponent = add_exponent; } else { /* also setup exponents used in rest of routine */ diff_exponent = mpy_exponent - add_exponent; result_exponent = mpy_exponent; } /* Invariant: left is not smaller than right. */ /* * Special case alignment of operands that would force alignment * beyond the extent of the extension. A further optimization * could special case this but only reduces the path length for * this infrequent case. */ if (diff_exponent > SGLEXT_THRESHOLD) { diff_exponent = SGLEXT_THRESHOLD; } /* Align right operand by shifting it to the right */ Sglext_clear_sign(rightp1); Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); /* Treat sum and difference of the operands separately. */ if ((int)save < 0) { /* * Difference of the two operands. Overflow can occur if the * multiply overflowed. A borrow can occur out of the hidden * bit and force a post normalization phase. */ Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, resultp1,resultp2); sign_save = Sgl_signextendedsign(resultp1); if (Sgl_iszero_hidden(resultp1)) { /* Handle normalization */ /* A straight foward algorithm would now shift the * result and extension left until the hidden bit * becomes one. Not all of the extension bits need * participate in the shift. Only the two most * significant bits (round and guard) are needed. * If only a single shift is needed then the guard * bit becomes a significant low order bit and the * extension must participate in the rounding. * If more than a single shift is needed, then all * bits to the right of the guard bit are zeros, * and the guard bit may or may not be zero. */ Sglext_leftshiftby1(resultp1,resultp2); /* Need to check for a zero result. The sign and * exponent fields have already been zeroed. The more * efficient test of the full object can be used. */ if (Sglext_iszero(resultp1,resultp2)) { /* Must have been "x-x" or "x+(-x)". */ if (Is_rounding_mode(ROUNDMINUS)) Sgl_setone_sign(resultp1); Sgl_copytoptr(resultp1,dstptr); return(NOEXCEPTION); } result_exponent--; /* Look to see if normalization is finished. */ if (Sgl_isone_hidden(resultp1)) { /* No further normalization is needed */ goto round; } /* Discover first one bit to determine shift amount. * Use a modified binary search. We have already * shifted the result one position right and still * not found a one so the remainder of the extension * must be zero and simplifies rounding. */ /* Scan bytes */ while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { Sglext_leftshiftby8(resultp1,resultp2); result_exponent -= 8; } /* Now narrow it down to the nibble */ if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { /* The lower nibble contains the * normalizing one */ Sglext_leftshiftby4(resultp1,resultp2); result_exponent -= 4; } /* Select case where first bit is set (already * normalized) otherwise select the proper shift. */ jumpsize = Sgl_hiddenhigh3mantissa(resultp1); if (jumpsize <= 7) switch(jumpsize) { case 1: Sglext_leftshiftby3(resultp1,resultp2); result_exponent -= 3; break; case 2: case 3: Sglext_leftshiftby2(resultp1,resultp2); result_exponent -= 2; break; case 4: case 5: case 6: case 7: Sglext_leftshiftby1(resultp1,resultp2); result_exponent -= 1; break; } } /* end if (hidden...)... */ /* Fall through and round */ } /* end if (save < 0)... */ else { /* Add magnitudes */ Sglext_addition(tmpresp1,tmpresp2, rightp1,rightp2, /*to*/resultp1,resultp2); sign_save = Sgl_signextendedsign(resultp1); if (Sgl_isone_hiddenoverflow(resultp1)) { /* Prenormalization required. */ Sglext_arithrightshiftby1(resultp1,resultp2); result_exponent++; } /* end if hiddenoverflow... */ } /* end else ...add magnitudes... */ /* Round the result. If the extension and lower two words are * all zeros, then the result is exact. Otherwise round in the * correct direction. Underflow is possible. If a postnormalization * is necessary, then the mantissa is all zeros so no shift is needed. */ round: if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); } Sgl_set_sign(resultp1,/*using*/sign_save); if (Sglext_isnotzero_mantissap2(resultp2)) { inexact = TRUE; switch(Rounding_mode()) { case ROUNDNEAREST: /* The default. */ if (Sglext_isone_highp2(resultp2)) { /* at least 1/2 ulp */ if (Sglext_isnotzero_low31p2(resultp2) || Sglext_isone_lowp1(resultp1)) { /* either exactly half way and odd or * more than 1/2ulp */ Sgl_increment(resultp1); } } break; case ROUNDPLUS: if (Sgl_iszero_sign(resultp1)) { /* Round up positive results */ Sgl_increment(resultp1); } break; case ROUNDMINUS: if (Sgl_isone_sign(resultp1)) { /* Round down negative results */ Sgl_increment(resultp1); } case ROUNDZERO:; /* truncate is simple */ } /* end switch... */ if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; } if (result_exponent >= SGL_INFINITY_EXPONENT) { /* Overflow */ if (Is_overflowtrap_enabled()) { /* * Adjust bias of result */ Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); Sgl_copytoptr(resultp1,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return (OPC_2E_OVERFLOWEXCEPTION | OPC_2E_INEXACTEXCEPTION); else Set_inexactflag(); return (OPC_2E_OVERFLOWEXCEPTION); } inexact = TRUE; Set_overflowflag(); Sgl_setoverflow(resultp1); } else if (result_exponent <= 0) { /* underflow case */ if (Is_underflowtrap_enabled()) { /* * Adjust bias of result */ Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); Sgl_copytoptr(resultp1,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return (OPC_2E_UNDERFLOWEXCEPTION | OPC_2E_INEXACTEXCEPTION); else Set_inexactflag(); return(OPC_2E_UNDERFLOWEXCEPTION); } else if (inexact && is_tiny) Set_underflowflag(); } else Sgl_set_exponent(resultp1,result_exponent); Sgl_copytoptr(resultp1,dstptr); if (inexact) if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); else Set_inexactflag(); return(NOEXCEPTION);}/* * Single Floating-point Multiply Negate Fused Add */sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr)sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr;unsigned int *status;{ unsigned int opnd1, opnd2, opnd3; register unsigned int tmpresp1, tmpresp2; unsigned int rightp1, rightp2; unsigned int resultp1, resultp2 = 0; register int mpy_exponent, add_exponent, count; boolean inexact = FALSE, is_tiny = FALSE; unsigned int signlessleft1, signlessright1, save; register int result_exponent, diff_exponent; int sign_save, jumpsize; Sgl_copyfromptr(src1ptr,opnd1); Sgl_copyfromptr(src2ptr,opnd2); Sgl_copyfromptr(src3ptr,opnd3); /* * set sign bit of result of multiply */ if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) Sgl_setzero(resultp1); else Sgl_setnegativezero(resultp1); /* * Generate multiply exponent */ mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; /* * check first operand for NaN's or infinity */ if (Sgl_isinfinity_exponent(opnd1)) { if (Sgl_iszero_mantissa(opnd1)) { if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { if (Sgl_iszero_exponentmantissa(opnd2)) { /* * invalid since operands are infinity * and zero */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Sgl_makequietnan(resultp1); Sgl_copytoptr(resultp1,dstptr); return(NOEXCEPTION); } /* * Check third operand for infinity with a * sign opposite of the multiply result */ if (Sgl_isinfinity(opnd3) && (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { /* * invalid since attempting a magnitude * subtraction of infinities */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Sgl_makequietnan(resultp1); Sgl_copytoptr(resultp1,dstptr); return(NOEXCEPTION); } /* * return infinity */ Sgl_setinfinity_exponentmantissa(resultp1); Sgl_copytoptr(resultp1,dstptr); return(NOEXCEPTION); } } else { /* * is NaN; signaling or quiet? */ if (Sgl_isone_signaling(opnd1)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Sgl_set_quiet(opnd1); } /* * is second operand a signaling NaN? */ else if (Sgl_is_signalingnan(opnd2)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Sgl_set_quiet(opnd2); Sgl_copytoptr(opnd2,dstptr); return(NOEXCEPTION); } /* * is third operand a signaling NaN? */ else if (Sgl_is_signalingnan(opnd3)) { /* trap if INVALIDTRAP enabled */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); /* make NaN quiet */ Set_invalidflag(); Sgl_set_quiet(opnd3); Sgl_copytoptr(opnd3,dstptr); return(NOEXCEPTION); } /* * return quiet NaN */ Sgl_copytoptr(opnd1,dstptr); return(NOEXCEPTION); } } /* * check second operand for NaN's or infinity */ if (Sgl_isinfinity_exponent(opnd2)) { if (Sgl_iszero_mantissa(opnd2)) { if (Sgl_isnotnan(opnd3)) { if (Sgl_iszero_exponentmantissa(opnd1)) { /* * invalid since multiply operands are * zero & infinity */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Sgl_makequietnan(opnd2); Sgl_copytoptr(opnd2,dstptr); return(NOEXCEPTION); } /* * Check third operand for infinity with a * sign opposite of the multiply result */ if (Sgl_isinfinity(opnd3) && (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { /* * invalid since attempting a magnitude * subtraction of infinities */ if (Is_invalidtrap_enabled()) return(OPC_2E_INVALIDEXCEPTION); Set_invalidflag(); Sgl_makequietnan(resultp1); Sgl_copytoptr
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -