⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fmpyfadd.c

📁 这个linux源代码是很全面的~基本完整了~使用c编译的~由于时间问题我没有亲自测试~但就算用来做参考资料也是非常好的
💻 C
📖 第 1 页 / 共 5 页
字号:
					 */					if (Is_invalidtrap_enabled())				       		return(OPC_2E_INVALIDEXCEPTION);				       	Set_invalidflag();				       	Dbl_makequietnan(resultp1,resultp2);					Dbl_copytoptr(resultp1,resultp2,dstptr);					return(NOEXCEPTION);				}				/*				 * return infinity				 */				Dbl_setinfinity_exponentmantissa(resultp1,resultp2);				Dbl_copytoptr(resultp1,resultp2,dstptr);				return(NOEXCEPTION);			}		}		else {			/*			 * is NaN; signaling or quiet?			 */			if (Dbl_isone_signaling(opnd2p1)) {				/* trap if INVALIDTRAP enabled */				if (Is_invalidtrap_enabled())					return(OPC_2E_INVALIDEXCEPTION);				/* make NaN quiet */				Set_invalidflag();				Dbl_set_quiet(opnd2p1);			}			/* 			 * is third operand a signaling NaN? 			 */			else if (Dbl_is_signalingnan(opnd3p1)) {			       	/* trap if INVALIDTRAP enabled */			       	if (Is_invalidtrap_enabled())				   		return(OPC_2E_INVALIDEXCEPTION);			       	/* make NaN quiet */			       	Set_invalidflag();			       	Dbl_set_quiet(opnd3p1);				Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);		       		return(NOEXCEPTION);			}			/*			 * return quiet NaN			 */			Dbl_copytoptr(opnd2p1,opnd2p2,dstptr);			return(NOEXCEPTION);		}	}	/*	 * check third operand for NaN's or infinity	 */	if (Dbl_isinfinity_exponent(opnd3p1)) {		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {			/* return infinity */			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);			return(NOEXCEPTION);		} else {			/*			 * is NaN; signaling or quiet?			 */			if (Dbl_isone_signaling(opnd3p1)) {				/* trap if INVALIDTRAP enabled */				if (Is_invalidtrap_enabled())					return(OPC_2E_INVALIDEXCEPTION);				/* make NaN quiet */				Set_invalidflag();				Dbl_set_quiet(opnd3p1);			}			/*			 * return quiet NaN 			 */			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);			return(NOEXCEPTION);		}    	}	/*	 * Generate multiply mantissa	 */	if (Dbl_isnotzero_exponent(opnd1p1)) {		/* set hidden bit */		Dbl_clear_signexponent_set_hidden(opnd1p1);	}	else {		/* check for zero */		if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) {			/*			 * Perform the add opnd3 with zero here.			 */			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {				if (Is_rounding_mode(ROUNDMINUS)) {					Dbl_or_signs(opnd3p1,resultp1);				} else {					Dbl_and_signs(opnd3p1,resultp1);				}			}			/*			 * Now let's check for trapped underflow case.			 */			else if (Dbl_iszero_exponent(opnd3p1) &&			         Is_underflowtrap_enabled()) {                    		/* need to normalize results mantissa */                    		sign_save = Dbl_signextendedsign(opnd3p1);				result_exponent = 0;                    		Dbl_leftshiftby1(opnd3p1,opnd3p2);                    		Dbl_normalize(opnd3p1,opnd3p2,result_exponent);                    		Dbl_set_sign(opnd3p1,/*using*/sign_save);                    		Dbl_setwrapped_exponent(opnd3p1,result_exponent,							unfl);                    		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);                    		/* inexact = FALSE */                    		return(OPC_2E_UNDERFLOWEXCEPTION);			}			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);			return(NOEXCEPTION);		}		/* is denormalized, adjust exponent */		Dbl_clear_signexponent(opnd1p1);		Dbl_leftshiftby1(opnd1p1,opnd1p2);		Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent);	}	/* opnd2 needs to have hidden bit set with msb in hidden bit */	if (Dbl_isnotzero_exponent(opnd2p1)) {		Dbl_clear_signexponent_set_hidden(opnd2p1);	}	else {		/* check for zero */		if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) {			/*			 * Perform the add opnd3 with zero here.			 */			if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) {				if (Is_rounding_mode(ROUNDMINUS)) {					Dbl_or_signs(opnd3p1,resultp1);				} else {					Dbl_and_signs(opnd3p1,resultp1);				}			}			/*			 * Now let's check for trapped underflow case.			 */			else if (Dbl_iszero_exponent(opnd3p1) &&			    Is_underflowtrap_enabled()) {                    		/* need to normalize results mantissa */                    		sign_save = Dbl_signextendedsign(opnd3p1);				result_exponent = 0;                    		Dbl_leftshiftby1(opnd3p1,opnd3p2);                    		Dbl_normalize(opnd3p1,opnd3p2,result_exponent);                    		Dbl_set_sign(opnd3p1,/*using*/sign_save);                    		Dbl_setwrapped_exponent(opnd3p1,result_exponent,							unfl);                    		Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);                    		/* inexact = FALSE */                    		return(OPC_2E_UNDERFLOWEXCEPTION);			}			Dbl_copytoptr(opnd3p1,opnd3p2,dstptr);			return(NOEXCEPTION);		}		/* is denormalized; want to normalize */		Dbl_clear_signexponent(opnd2p1);		Dbl_leftshiftby1(opnd2p1,opnd2p2);		Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent);	}	/* Multiply the first two source mantissas together */	/* 	 * The intermediate result will be kept in tmpres,	 * which needs enough room for 106 bits of mantissa,	 * so lets call it a Double extended.	 */	Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4);	/* 	 * Four bits at a time are inspected in each loop, and a 	 * simple shift and add multiply algorithm is used. 	 */ 	for (count = DBL_P-1; count >= 0; count -= 4) {		Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4);		if (Dbit28p2(opnd1p2)) {	 		/* Fourword_add should be an ADD followed by 3 ADDC's */			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, 			 opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0);		}		if (Dbit29p2(opnd1p2)) {			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,			 opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0);		}		if (Dbit30p2(opnd1p2)) {			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,			 opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0);		}		if (Dbit31p2(opnd1p2)) {			Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4,			 opnd2p1, opnd2p2, 0, 0);		}		Dbl_rightshiftby4(opnd1p1,opnd1p2);	}	if (Is_dexthiddenoverflow(tmpresp1)) {		/* result mantissa >= 2 (mantissa overflow) */		mpy_exponent++;		Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4);	}	/*	 * Restore the sign of the mpy result which was saved in resultp1.	 * The exponent will continue to be kept in mpy_exponent.	 */	Dblext_set_sign(tmpresp1,Dbl_sign(resultp1));	/* 	 * No rounding is required, since the result of the multiply	 * is exact in the extended format.	 */	/*	 * Now we are ready to perform the add portion of the operation.	 *	 * The exponents need to be kept as integers for now, since the	 * multiply result might not fit into the exponent field.  We	 * can't overflow or underflow because of this yet, since the	 * add could bring the final result back into range.	 */	add_exponent = Dbl_exponent(opnd3p1);	/*	 * Check for denormalized or zero add operand.	 */	if (add_exponent == 0) {		/* check for zero */		if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) {			/* right is zero */			/* Left can't be zero and must be result.			 *			 * The final result is now in tmpres and mpy_exponent,			 * and needs to be rounded and squeezed back into			 * double precision format from double extended.			 */			result_exponent = mpy_exponent;			Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4,				resultp1,resultp2,resultp3,resultp4);			sign_save = Dbl_signextendedsign(resultp1);/*save sign*/			goto round;		}		/* 		 * Neither are zeroes.  		 * Adjust exponent and normalize add operand.		 */		sign_save = Dbl_signextendedsign(opnd3p1);	/* save sign */		Dbl_clear_signexponent(opnd3p1);		Dbl_leftshiftby1(opnd3p1,opnd3p2);		Dbl_normalize(opnd3p1,opnd3p2,add_exponent);		Dbl_set_sign(opnd3p1,sign_save);	/* restore sign */	} else {		Dbl_clear_exponent_set_hidden(opnd3p1);	}	/*	 * Copy opnd3 to the double extended variable called right.	 */	Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4);	/*	 * A zero "save" helps discover equal operands (for later),	 * and is used in swapping operands (if needed).	 */	Dblext_xortointp1(tmpresp1,rightp1,/*to*/save);	/*	 * Compare magnitude of operands.	 */	Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1);	Dblext_copytoint_exponentmantissap1(rightp1,signlessright1);	if (mpy_exponent < add_exponent || mpy_exponent == add_exponent &&	    Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){		/*		 * Set the left operand to the larger one by XOR swap.		 * First finish the first word "save".		 */		Dblext_xorfromintp1(save,rightp1,/*to*/rightp1);		Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1);		Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4,			rightp2,rightp3,rightp4);		/* also setup exponents used in rest of routine */		diff_exponent = add_exponent - mpy_exponent;		result_exponent = add_exponent;	} else {		/* also setup exponents used in rest of routine */		diff_exponent = mpy_exponent - add_exponent;		result_exponent = mpy_exponent;	}	/* Invariant: left is not smaller than right. */	/*	 * Special case alignment of operands that would force alignment	 * beyond the extent of the extension.  A further optimization	 * could special case this but only reduces the path length for	 * this infrequent case.	 */	if (diff_exponent > DBLEXT_THRESHOLD) {		diff_exponent = DBLEXT_THRESHOLD;	}	/* Align right operand by shifting it to the right */	Dblext_clear_sign(rightp1);	Dblext_right_align(rightp1,rightp2,rightp3,rightp4,		/*shifted by*/diff_exponent);		/* Treat sum and difference of the operands separately. */	if ((int)save < 0) {		/*		 * Difference of the two operands.  Overflow can occur if the		 * multiply overflowed.  A borrow can occur out of the hidden		 * bit and force a post normalization phase.		 */		Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4,			rightp1,rightp2,rightp3,rightp4,			resultp1,resultp2,resultp3,resultp4);		sign_save = Dbl_signextendedsign(resultp1);		if (Dbl_iszero_hidden(resultp1)) {			/* Handle normalization */		/* A straight foward algorithm would now shift the		 * result and extension left until the hidden bit		 * becomes one.  Not all of the extension bits need		 * participate in the shift.  Only the two most 		 * significant bits (round and guard) are needed.		 * If only a single shift is needed then the guard		 * bit becomes a significant low order bit and the		 * extension must participate in the rounding.		 * If more than a single shift is needed, then all		 * bits to the right of the guard bit are zeros, 		 * and the guard bit may or may not be zero. */			Dblext_leftshiftby1(resultp1,resultp2,resultp3,				resultp4);			/* Need to check for a zero result.  The sign and			 * exponent fields have already been zeroed.  The more			 * efficient test of the full object can be used.			 */			 if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) {				/* Must have been "x-x" or "x+(-x)". */				if (Is_rounding_mode(ROUNDMINUS))					Dbl_setone_sign(resultp1);				Dbl_copytoptr(resultp1,resultp2,dstptr);				return(NOEXCEPTION);			}			result_exponent--;			/* Look to see if normalization is finished. */			if (Dbl_isone_hidden(resultp1)) {				/* No further normalization is needed */				goto round;			}			/* Discover first one bit to determine shift amount.			 * Use a modified binary search.  We have already			 * shifted the result one position right and still			 * not found a one so the remainder of the extension			 * must be zero and simplifies rounding. */			/* Scan bytes */			while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) {				Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4);				result_exponent -= 8;			}			/* Now narrow it down to the nibble */			if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) {				/* The lower nibble contains the				 * normalizing one */				Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4);				result_exponent -= 4;			}			/* Select case where first bit is set (already			 * normalized) otherwise select the proper shift. */			jumpsize = Dbl_hiddenhigh3mantissa(resultp1);			if (jumpsize <= 7) switch(jumpsize) {			case 1:				Dblext_leftshiftby3(resultp1,resultp2,resultp3,					resultp4);				result_exponent -= 3;				break;			case 2:			case 3:				Dblext_leftshiftby2(resultp1,resultp2,resultp3,					resultp4);				result_exponent -= 2;				break;			case 4:			case 5:			case 6:			case 7:				Dblext_leftshiftby1(resultp1,resultp2,resultp3,					resultp4);				result_exponent -= 1;				break;			}		} /* end if (hidden...)... */	/* Fall through and round */	} /* end if (save < 0)... */	else {		/* Add magnitudes */		Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4,			rightp1,rightp2,rightp3,rightp4,			/*to*/resultp1,resultp2,resultp3,resultp4);		sign_save = Dbl_signextendedsign(resultp1);		if (Dbl_isone_hiddenoverflow(resultp1)) {	    		/* Prenormalization required. */	    		Dblext_arithrightshiftby1(resultp1,resultp2,resultp3,				resultp4);	    		result_exponent++;		} /* end if hiddenoverflow... */	} /* end else ...add magnitudes... */	/* Round the result.  If the extension and lower two words are	 * all zeros, then the result is exact.  Otherwise round in the	 * correct direction.  Underflow is possible. If a postnormalization	 * is necessary, then the mantissa is all zeros so no shift is needed.	 */  round:	if (result_exponent <= 0 && !Is_underflowtrap_enabled()) {		Dblext_denormalize(resultp1,resultp2,resultp3,resultp4,			result_exponent,is_tiny);	}	Dbl_set_sign(resultp1,/*using*/sign_save);	if (Dblext_isnotzero_mantissap3(resultp3) || 	    Dblext_isnotzero_mantissap4(resultp4)) {		inexact = TRUE;		switch(Rounding_mode()) {		case ROUNDNEAREST: /* The default. */			if (Dblext_isone_highp3(resultp3)) {				/* at least 1/2 ulp */				if (Dblext_isnotzero_low31p3(resultp3) ||				    Dblext_isnotzero_mantissap4(resultp4) ||				    Dblext_isone_lowp2(resultp2)) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -